Targeted Protein Degradation: from Chemical Biology to Drug Discovery.

Traditional pharmaceutical drug discovery is almost exclusively focused on directly controlling protein activity to cure diseases. Modulators of protein activity, especially inhibitors, are developed and applied at high concentration to achieve maximal effects. Thereby, reduced bioavailability and off-target effects can hamper compound efficacy. Nucleic acid-based strategies that control protein function by affecting expression have emerged as an alternative. However, metabolic stability and broad bioavailability represent development hurdles that remain to be overcome for these approaches. More recently, utilizing the cell's own protein destruction machinery for selective degradation of essential drivers of human disorders has opened up a new and exciting area of drug discovery. Small-molecule-induced proteolysis of selected substrates offers the potential of reaching beyond the limitations of the current pharmaceutical paradigm to expand the druggable target space.

[1]  Yevgeniy V. Serebrenik,et al.  Targeted Protein Destabilization Reveals an Estrogen-mediated ER Stress Response , 2014, Nature chemical biology.

[2]  W. L. Jorgensen,et al.  Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF1α. , 2012, Angewandte Chemie.

[3]  Christopher J. Ott,et al.  The Myeloma Drug Lenalidomide Promotes the Cereblon-Dependent Destruction of Ikaros Proteins , 2014, Science.

[4]  Yukihiro Itoh,et al.  Development of target protein-selective degradation inducer for protein knockdown. , 2011, Bioorganic & medicinal chemistry.

[5]  E. Choi,et al.  Jostling for Position: Optimizing Linker Location in the Design of Estrogen Receptor‐Targeting PROTACs , 2010, ChemMedChem.

[6]  A. Hopkins,et al.  The druggable genome , 2002, Nature Reviews Drug Discovery.

[7]  M. Rapé,et al.  The increasing complexity of the ubiquitin code , 2016, Nature Cell Biology.

[8]  D. Lamont,et al.  Structural basis of PROTAC cooperative recognition for selective protein degradation , 2017, Nature chemical biology.

[9]  S. Fang,et al.  RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Tony Taldone,et al.  Targeting Hsp90: small-molecule inhibitors and their clinical development. , 2008, Current opinion in pharmacology.

[11]  P. Jänne,et al.  Pharmacological Targeting of the Pseudokinase Her3 , 2014, Nature chemical biology.

[12]  M. Naito,et al.  In Vivo Knockdown of Pathogenic Proteins via Specific and Nongenetic Inhibitor of Apoptosis Protein (IAP)-dependent Protein Erasers (SNIPERs)* , 2017, The Journal of Biological Chemistry.

[13]  Yukihiro Itoh,et al.  G-Protein–Coupled Receptor Kinase 2 as a Potential Modulator of the Hallmarks of Cancer , 2017, Molecular Pharmacology.

[14]  James E. Bradner,et al.  Phthalimide conjugation as a strategy for in vivo target protein degradation , 2015, Science.

[15]  Kwong Wai Choy,et al.  Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies. , 2014, Gene.

[16]  Daniel G. Anderson,et al.  Knocking down barriers: advances in siRNA delivery , 2009, Nature Reviews Drug Discovery.

[17]  Dennis L. Buckley,et al.  Small-Molecule-Mediated Degradation of the Androgen Receptor through Hydrophobic Tagging. , 2015, Angewandte Chemie.

[18]  Yukihiro Itoh,et al.  Design, synthesis and biological evaluation of nuclear receptor-degradation inducers. , 2011, Bioorganic & medicinal chemistry.

[19]  Andreas Thomann,et al.  Dissecting fragment-based lead discovery at the von Hippel-Lindau protein:hypoxia inducible factor 1α protein-protein interface. , 2012, Chemistry & biology.

[20]  M. Ellis,et al.  Targeted Degradation of BET Proteins in Triple-Negative Breast Cancer. , 2017, Cancer research.

[21]  Philipp M. Cromm,et al.  Small-molecule modulation of Ras signaling. , 2014, Nature chemical biology.

[22]  Craig M. Crews,et al.  Induced protein degradation: an emerging drug discovery paradigm , 2016, Nature Reviews Drug Discovery.

[23]  C. Crews,et al.  Targeted Protein Degradation by Small Molecules. , 2017, Annual review of pharmacology and toxicology.

[24]  Herbert Waldmann,et al.  New Modalities for Challenging Targets in Drug Discovery. , 2017, Angewandte Chemie.

[25]  Jeremy L. Jenkins,et al.  Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide , 2014, Nature.

[26]  C. Pickart,et al.  Ubiquitin: structures, functions, mechanisms. , 2004, Biochimica et biophysica acta.

[27]  Yong-Xiang Chen,et al.  Specific Knockdown of Endogenous Tau Protein by Peptide-Directed Ubiquitin-Proteasome Degradation. , 2016, Cell chemical biology.

[28]  Julien Michel,et al.  Targeting the von Hippel–Lindau E3 Ubiquitin Ligase Using Small Molecules To Disrupt the VHL/HIF-1α Interaction , 2012, Journal of the American Chemical Society.

[29]  Yukihiro Itoh,et al.  Double protein knockdown of cIAP1 and CRABP-II using a hybrid molecule consisting of ATRA and IAPs antagonist. , 2012, Bioorganic & medicinal chemistry letters.

[30]  C. Garrido,et al.  Targeting heat shock proteins in cancer. , 2013, Cancer letters.

[31]  K. Bielskienė,et al.  E3 ubiquitin ligases as drug targets and prognostic biomarkers in melanoma. , 2015, Medicina.

[32]  A. Weissman,et al.  HECT and RING finger families of E3 ubiquitin ligases at a glance , 2012, Journal of Cell Science.

[33]  A. Ransick,et al.  Development of Protacs to Target Cancer-promoting Proteins for Ubiquitination and Degradation* , 2003, Molecular & Cellular Proteomics.

[34]  Christopher L. McClendon,et al.  Reaching for high-hanging fruit in drug discovery at protein–protein interfaces , 2007, Nature.

[35]  A. Sutherland,et al.  Degradation of Akt using protein‐catalyzed capture agents , 2016, Journal of peptide science : an official publication of the European Peptide Society.

[36]  Minoru Ishikawa,et al.  Protein knockdown using methyl bestatin-ligand hybrid molecules: design and synthesis of inducers of ubiquitination-mediated degradation of cellular retinoic acid-binding proteins. , 2010, Journal of the American Chemical Society.

[37]  G. Krissansen,et al.  Design of a PROTAC that antagonizes and destroys the cancer-forming X-protein of the hepatitis B virus. , 2014, Biochemical and biophysical research communications.

[38]  C. Crews,et al.  PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer , 2016, Proceedings of the National Academy of Sciences.

[39]  Christopher J. Schofield,et al.  Structural basis for the recognition of hydroxyproline in HIF-1α by pVHL , 2002, Nature.

[40]  T. Heightman,et al.  Protein Degradation by In-Cell Self-Assembly of Proteolysis Targeting Chimeras , 2016, ACS central science.

[41]  I. E. Smith,et al.  Catalytic in vivo protein knockdown by small-molecule PROTACs. , 2015, Nature chemical biology.

[42]  J. Pruneda,et al.  RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. , 2014, Biochimica et biophysica acta.

[43]  O. Koch,et al.  Structure-Based Design of Inhibitors of Protein–Protein Interactions: Mimicking Peptide Binding Epitopes , 2015, Angewandte Chemie.

[44]  D. Finley,et al.  Recognition and processing of ubiquitin-protein conjugates by the proteasome. , 2009, Annual review of biochemistry.

[45]  D. Craik,et al.  The Future of Peptide‐based Drugs , 2013, Chemical biology & drug design.

[46]  R. Deshaies,et al.  Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer , 2008, Oncogene.

[47]  A. Weissman,et al.  RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis , 2011, Nature Reviews Cancer.

[48]  L. Hedstrom,et al.  Ubiquilin-mediated Small Molecule Inhibition of Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling* , 2016, The Journal of Biological Chemistry.

[49]  E. Choi,et al.  Two‐Headed PROTAC: An Effective New Tool for Targeted Protein Degradation , 2010, Chembiochem : a European journal of chemical biology.

[50]  Xavier Lucas,et al.  Recognition of substrate degrons by E3 ubiquitin ligases and modulation by small-molecule mimicry strategies. , 2017, Current opinion in structural biology.

[51]  Raymond J. Deshaies,et al.  Function and regulation of cullin–RING ubiquitin ligases , 2005, Nature Reviews Molecular Cell Biology.

[52]  Richard D Vierstra,et al.  The cullin-RING ubiquitin-protein ligases. , 2011, Annual review of plant biology.

[53]  C. Crews,et al.  Hijacking the E3 Ubiquitin Ligase Cereblon to Efficiently Target BRD4. , 2015, Chemistry & biology.

[54]  M. Naito,et al.  Cancer cell death induced by novel small molecules degrading the TACC3 protein via the ubiquitin–proteasome pathway , 2014, Cell Death and Disease.

[55]  Toshihiko Ogura,et al.  Identification of a Primary Target of Thalidomide Teratogenicity , 2010, Science.

[56]  R. Singh,et al.  UBE1L2, a Novel E1 Enzyme Specific for Ubiquitin*♦ , 2007, Journal of Biological Chemistry.

[57]  Philipp M. Cromm,et al.  Hydrocarbon stapled peptides as modulators of biological function. , 2015, ACS chemical biology.

[58]  H. Swanson,et al.  Development of an Aryl Hydrocarbon Receptor Antagonist Using the Proteolysis-Targeting Chimeric Molecules Approach: A Potential Tool for Chemoprevention , 2008, Molecular Pharmacology.

[59]  M. Rapé,et al.  The Ubiquitin Code , 2012, Annual review of biochemistry.

[60]  T. Willson,et al.  Structural basis for an unexpected mode of SERM-mediated ER antagonism. , 2005, Molecular cell.

[61]  Travis J Cohoon,et al.  Efficacy of BET Bromodomain Inhibition in Kras-Mutant Non–Small Cell Lung Cancer , 2013, Clinical Cancer Research.

[62]  M. Ivan,et al.  Structure of an HIF-1α-pVHL Complex: Hydroxyproline Recognition in Signaling , 2002, Science.

[63]  M. Socinski,et al.  HSP90 inhibitors in lung cancer: promise still unfulfilled. , 2016, Clinical advances in hematology & oncology : H&O.

[64]  P. Jänne,et al.  Development of small molecules targeting the pseudokinase Her3. , 2015, Bioorganic & medicinal chemistry letters.

[65]  A. Adjei What is the right dose? The elusive optimal biologic dose in phase I clinical trials. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[66]  T. Blundell,et al.  Structural biology and drug discovery of difficult targets: the limits of ligandability. , 2012, Chemistry & biology.

[67]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[68]  S. Gygi,et al.  Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging , 2007, Nature.

[69]  M. Hochstrasser,et al.  Modification of proteins by ubiquitin and ubiquitin-like proteins. , 2006, Annual review of cell and developmental biology.

[70]  S. Carr,et al.  Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS , 2015, Nature.

[71]  Y. Hashimoto,et al.  Efficient protein knockdown of HaloTag-fused proteins using hybrid molecules consisting of IAP antagonist and HaloTag ligand. , 2016, Bioorganic & medicinal chemistry.

[72]  N. Artzi,et al.  Are RNAi and miRNA therapeutics truly dead? , 2015, Trends in biotechnology.

[73]  B. Wittmann,et al.  Definition of functionally important mechanistic differences among selective estrogen receptor down-regulators. , 2007, Cancer research.

[74]  Michael A. Koldobskiy,et al.  Chemical genetic control of protein levels: selective in vivo targeted degradation. , 2004, Journal of the American Chemical Society.

[75]  E. Choi,et al.  Impact of linker length on the activity of PROTACs. , 2011, Molecular bioSystems.

[76]  Jin-jin Fan,et al.  New strategy for renal fibrosis: Targeting Smad3 proteins for ubiquitination and degradation. , 2016, Biochemical pharmacology.

[77]  M. Naito,et al.  Development of hybrid small molecules that induce degradation of estrogen receptor‐alpha and necrotic cell death in breast cancer cells , 2013, Cancer science.

[78]  D. Komander The emerging complexity of protein ubiquitination. , 2009, Biochemical Society transactions.

[79]  Y. Shang,et al.  Estrogen and cancer. , 2013, Annual review of physiology.

[80]  C. Crews,et al.  Proteolysis-Targeting Chimeras: Induced Protein Degradation as a Therapeutic Strategy. , 2017, ACS chemical biology.

[81]  S. Baek,et al.  Degradation of target protein in living cells by small-molecule proteolysis inducer. , 2004, Bioorganic & medicinal chemistry letters.

[82]  S. Baek,et al.  Use of PROTACS as molecular probes of angiogenesis. , 2005, Bioorganic & medicinal chemistry letters.

[83]  Gur Pines,et al.  The ERBB network: at last, cancer therapy meets systems biology , 2012, Nature Reviews Cancer.

[84]  J. Lazo,et al.  Drugging Undruggable Molecular Cancer Targets. , 2016, Annual review of pharmacology and toxicology.

[85]  S. Orkin,et al.  Transcription control by the ENL YEATS domain in acute leukemia , 2016, Nature.

[86]  Akio Matsuda,et al.  Genome-Wide and Functional Annotation of Human E3 Ubiquitin Ligases Identifies MULAN, a Mitochondrial E3 that Regulates the Organelle's Dynamics and Signaling , 2008, PloS one.

[87]  F. Fitzpatrick,et al.  Leukotriene A4 hydrolase. Inhibition by bestatin and intrinsic aminopeptidase activity establish its functional resemblance to metallohydrolase enzymes. , 1991, The Journal of biological chemistry.

[88]  V. Kirkin,et al.  Ubiquitin networks in cancer. , 2011, Current opinion in genetics & development.

[89]  T. Tsuruo,et al.  Small Molecules Destabilize cIAP1 by Activating Auto-ubiquitylation* , 2008, Journal of Biological Chemistry.

[90]  R. Kurzrock,et al.  Targeting the molecular chaperone heat shock protein 90 (HSP90): lessons learned and future directions. , 2013, Cancer treatment reviews.

[91]  C. Crews,et al.  Chemical biology: Greasy tags for protein removal , 2012, Nature.

[92]  C. Day,et al.  RINGs hold the key to ubiquitin transfer. , 2012, Trends in biochemical sciences.

[93]  Liu Liu,et al.  Discovery of a Small-Molecule Degrader of Bromodomain and Extra-Terminal (BET) Proteins with Picomolar Cellular Potencies and Capable of Achieving Tumor Regression , 2017, Journal of medicinal chemistry.

[94]  L. Hedstrom,et al.  Inhibitor mediated protein degradation. , 2012, Chemistry & biology.

[95]  P. Qiu,et al.  Novel BET protein Proteolysis Targeting Chimera (BET-PROTAC) exerts superior lethal activity than Bromodomain Inhibitor (BETi) against post-myeloproliferative Neoplasm (MPN) Secondary (s) AML Cells , 2016, Leukemia.

[96]  A. Varshavsky Naming a targeting signal , 1991, Cell.

[97]  Ivan Dikic,et al.  Functional roles of ubiquitin-like domain (ULD) and ubiquitin-binding domain (UBD) containing proteins. , 2009, Chemical reviews.

[98]  C. Crews,et al.  Small-Molecule PROTACS: New Approaches to Protein Degradation. , 2016, Angewandte Chemie.

[99]  Christopher E. Berndsen,et al.  New insights into ubiquitin E3 ligase mechanism , 2014, Nature Structural &Molecular Biology.

[100]  R. Deshaies,et al.  RING domain E3 ubiquitin ligases. , 2009, Annual review of biochemistry.

[101]  T. Corson,et al.  Posttranslational protein knockdown coupled to receptor tyrosine kinase activation with phosphoPROTACs , 2013, Proceedings of the National Academy of Sciences.

[102]  I. E. Smith,et al.  HaloPROTACS: Use of Small Molecule PROTACs to Induce Degradation of HaloTag Fusion Proteins. , 2015, ACS chemical biology.

[103]  M. Naito,et al.  Design and synthesis of estrogen receptor degradation inducer based on a protein knockdown strategy. , 2012, Bioorganic & medicinal chemistry letters.

[104]  C. Crews,et al.  Targeted intracellular protein degradation induced by a small molecule: En route to chemical proteomics. , 2008, Bioorganic & medicinal chemistry letters.

[105]  A. Rabow,et al.  Small-molecule androgen receptor downregulators as an approach to treatment of advanced prostate cancer. , 2011, Bioorganic & medicinal chemistry letters.

[106]  A. Ciulli,et al.  Selective Small Molecule Induced Degradation of the BET Bromodomain Protein BRD4 , 2015, ACS chemical biology.

[107]  C. Crews,et al.  Waste disposal—An attractive strategy for cancer therapy , 2017, Science.

[108]  Eunhwa Ko,et al.  Modular PROTAC Design for the Degradation of Oncogenic BCR-ABL. , 2016, Angewandte Chemie.

[109]  R. Deshaies,et al.  Protacs: Chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[110]  Philipp M. Cromm,et al.  Direct Modulation of Small GTPase Activity and Function. , 2015, Angewandte Chemie.

[111]  H. Handa,et al.  Structure of the human Cereblon–DDB1–lenalidomide complex reveals basis for responsiveness to thalidomide analogs , 2014, Nature Structural &Molecular Biology.

[112]  Rhys D O Jones,et al.  AZD3514: A Small Molecule That Modulates Androgen Receptor Signaling and Function In Vitro and In Vivo , 2013, Molecular Cancer Therapeutics.

[113]  T. Aoyagi,et al.  Bestatin, an inhibitor of aminopeptidase B, produced by actinomycetes. , 1976, The Journal of antibiotics.

[114]  Pedro Soares,et al.  Structure-Guided Design and Optimization of Small Molecules Targeting the Protein–Protein Interaction between the von Hippel–Lindau (VHL) E3 Ubiquitin Ligase and the Hypoxia Inducible Factor (HIF) Alpha Subunit with in Vitro Nanomolar Affinities , 2014, Journal of medicinal chemistry.

[115]  T. Corson,et al.  Small-Molecule Hydrophobic Tagging Induced Degradation of HaloTag Fusion Proteins , 2011, Nature Chemical Biology.

[116]  M. Naito,et al.  Development of BCR-ABL degradation inducers via the conjugation of an imatinib derivative and a cIAP1 ligand. , 2016, Bioorganic & medicinal chemistry letters.

[117]  C. Der,et al.  Drugging RAS: Know the enemy , 2017, Science.

[118]  M. Parker,et al.  Antiestrogen ICI 164,384 reduces cellular estrogen receptor content by increasing its turnover. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[119]  E. Choi,et al.  Targeted Degradation of the Aryl Hydrocarbon Receptor by the PROTAC Approach: A Useful Chemical Genetic Tool , 2007, Chembiochem : a European journal of chemical biology.