High-efficiency heterojunction crystalline Si solar cells

High-efficiency back-contact heterojunction crystalline Si (c-Si) solar cells with record-breaking conversion efficiencies of 26.7% for cells and 24.5% for modules are reported. The importance of thin-film Si solar cell technology for heterojunction c-Si solar cells with amorphous Si passivation layers in improving conversion efficiency and reducing production cost is demonstrated. Our attempts to reduce the production cost of a heterojunction c-Si solar cell by applying a SiOx layer prepared by a plasma-enhanced CVD method are presented. The characteristics of heterojunction c-Si solar cells are clarified by comparing them with those of practical homojunction solar cells, and crucial targets for industrialization of back-contact heterojunction c-Si solar cells are discussed. Owing to the recent improvement of c-Si solar cells and perovskite solar cells, conversion efficiencies over 30% have become a realistic target by using a two-terminal tandem structure with a heterojunction c-Si solar cell and a perovskite solar cell.

[1]  K. Yoshikawa,et al.  Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26% , 2017, Nature Energy.

[2]  K. Yoshikawa,et al.  6 inch High efficiency back contact crystalline Si solar cell applying heterojunction and thinfilm technology , 2016, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC).

[3]  K. Yoshikawa,et al.  High Efficiency Copper Electroplated Heterojunction Solar Cells and Modules – The Path towards 25% Cell Efficiency , 2013 .

[4]  Naoteru Matsubara,et al.  Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell , 2014, IEEE Journal of Photovoltaics.

[5]  N. Park,et al.  High efficiency solar cells combining a perovskite and a silicon heterojunction solar cells via an optical splitting system , 2015 .

[6]  Kenji Yamamoto,et al.  Minimizing optical losses in monolithic perovskite/c-Si tandem solar cells with a flat top cell. , 2016, Optics express.

[7]  C. Ballif,et al.  Amorphous Silicon/Crystalline Silicon Heterojunction Solar Cells , 2014 .

[8]  D. Adachi,et al.  Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency , 2015 .

[9]  Julian S. Cashmore,et al.  Record amorphous silicon single‐junction photovoltaic module with 9.1% stabilized conversion efficiency on 1.43 m2 , 2016 .

[10]  D. Adachi,et al.  High-efficiency heterojunction crystalline Si solar cell and optical splitting structure fabricated by applying thin-film Si technology , 2015 .

[11]  Y. Nishino,et al.  Thermoelectric properties of Al–Mn–Si C40 phase containing small amount of W or Ta , 2014 .

[12]  W. Warta,et al.  Solar cell efficiency tables (version 49) , 2017 .

[13]  Jonathan P. Mailoa,et al.  23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.

[14]  Christophe Ballif,et al.  Ch 3 Nh 3 Pbi 3 Perovskite / Silicon Tandem Solar Cells: Characterization Based Optical Simulations , 2022 .

[15]  P. Altermatt,et al.  22.13% Efficient industrial p-type mono PERC solar cell , 2016, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC).

[16]  Toshihiko Uto,et al.  Effects of SiOx barrier layer prepared by plasma-enhanced chemical vapor deposition on improvement of long-term reliability and production cost for Cu-plated amorphous Si/crystalline Si heterojunction solar cells , 2017 .

[17]  High-current perovskite solar cells fabricated with optically enhanced transparent conductive oxides , 2017 .

[18]  Atse Louwen,et al.  A cost roadmap for silicon heterojunction solar cells , 2016 .

[19]  S. Glunz,et al.  n-Type Si solar cells with passivating electron contact: Identifying sources for efficiency limitations by wafer thickness and resistivity variation , 2017 .

[20]  K. Yoshikawa,et al.  Progress & Challenges in Thin-Film Silicon Photovoltaics: Heterojunctions & Multijunctions , 2015 .

[21]  K. Yoshikawa,et al.  Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology , 2017 .

[22]  B. Rech,et al.  Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature , 2016 .

[23]  Richard M. Swanson,et al.  Point-contact silicon solar cells , 1984, IEEE Transactions on Electron Devices.

[24]  W. Warta,et al.  Solar cell efficiency tables (version 50) , 2017 .

[25]  T. White,et al.  Pyramidal surface textures for light trapping and antireflection in perovskite-on-silicon tandem solar cells. , 2014, Optics express.

[26]  K. Vandersmissen,et al.  High Efficiency Silver-Free Heterojunction Silicon Solar Cell , 2012 .

[27]  C. Ballif,et al.  Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm(2). , 2016, The journal of physical chemistry letters.

[28]  Nripan Mathews,et al.  Band-gap tuning of lead halide perovskites using a sequential deposition process , 2014 .

[29]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[30]  Rudi Santbergen,et al.  The absorption factor of crystalline silicon PV cells: A numerical and experimental study , 2008 .

[31]  K. Yoshikawa,et al.  High Efficiency Copper Electroplated Heterojunction Solar Cells , 2012 .

[32]  Jonathan P. Mailoa,et al.  A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction , 2015 .

[33]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.