Biochemistry and genetics of microbial xylanases.

[1]  K. Horikoshi,et al.  Thermophilic Alkaline Xylanase from Newly Isolated Alkaliphilic and Thermophilic Bacillus sp. Strain TAR-1. , 1994, Bioscience, biotechnology, and biochemistry.

[2]  J. Rouvinen,et al.  Three‐dimensional structure of endo‐1,4‐beta‐xylanase II from Trichoderma reesei: two conformational states in the active site. , 1994, The EMBO journal.

[3]  J. Rouvinen,et al.  Structural comparison of two major endo-1,4-xylanases from Trichoderma reesei. , 1995, Biochemistry.

[4]  H. Gilbert,et al.  A modular xylanase containing a novel non-catalytic xylan-specific binding domain. , 1995, The Biochemical journal.

[5]  D. Wilson,et al.  Characterization and sequence of a Thermomonospora fusca xylanase , 1994, Applied and environmental microbiology.

[6]  H. Gilbert,et al.  Specificity of an esterase (XYLD) from Pseudomonas fluorescens subsp. cellulosa. , 1995, Biochimica et biophysica acta.

[7]  J. Buchert,et al.  The Leachability of Lignin from Kraft Pulps after Xylanase Treatment , 1994 .

[8]  B. Henrissat,et al.  Structures and mechanisms of glycosyl hydrolases. , 1995, Structure.

[9]  W. Liebl,et al.  Two Extremely Thermostable Xylanases of the Hyperthermophilic Bacterium Thermotoga maritima MSB8 , 1995, Applied and environmental microbiology.

[10]  H. Gilbert,et al.  Xylanase B and an arabinofuranosidase from Pseudomonas fluorescens subsp. cellulosa contain identical cellulose-binding domains and are encoded by adjacent genes. , 1990, The Biochemical journal.

[11]  S. Yoshida,et al.  Structure of hardwood xylan and specificity of Streptomyces beta-xylanase toward the xylan. , 1994, Bioscience, biotechnology, and biochemistry.

[12]  S. Decker,et al.  Role of Acetyl Esterase in Biomass Conversion , 1994 .

[13]  M. Scott,et al.  Structure of the catalytic core of the family F xylanase from Pseudomonas fluorescens and identification of the xylopentaose-binding sites. , 1994, Structure.

[14]  R. Pickersgill,et al.  β‐Glucosidase, β‐galactosidase, family A cellulases, family F xylanases and two barley glycanases form a superfamily of enzymes wit 8‐fold β/α architecture and with two conserved glutamates near the carboxy‐terminal ends of β‐strands four and seven , 1995 .

[15]  S. Withers,et al.  Identification of glutamic acid 78 as the active site nucleophile in Bacillus subtilis xylanase using electrospray tandem mass spectrometry. , 1994, Biochemistry.

[16]  U Derewenda,et al.  Crystal structure, at 2.6-A resolution, of the Streptomyces lividans xylanase A, a member of the F family of beta-1,4-D-glycanases. , 1995, The Journal of biological chemistry.

[17]  G. Xue,et al.  Xylanase B from Neocallimastix patriciarum contains a non-catalytic 455-residue linker sequence comprised of 57 repeats of an octapeptide. , 1994, The Biochemical journal.

[18]  Zbigniew Dauter,et al.  A common protein fold and similar active site in two distinct families of β-glycanases , 1996, Nature Structural Biology.

[19]  Kaisa Poutanen,et al.  Two major xylanases of Trichoderma reesei , 1992 .

[20]  T. Oku,et al.  Substrate Specificity of Streptomyces β-Xylanase toward Glucoxylan , 1994 .

[21]  A. Suurnäkki,et al.  Effects of lignin-modifying enzymes on pine kraft pulp , 1994 .

[22]  Robert L. Campbell,et al.  Thermostabilization of the Bacillus circulansxylanase by the introduction of disulfide bonds , 1994 .

[23]  C. Manin,et al.  Purification and characterization of an alpha-L-arabinofuranosidase from Streptomyces lividans 66 and DNA sequence of the gene (abfA). , 1994, The Biochemical journal.

[24]  H. Gilbert,et al.  A modular esterase from Pseudomonas fluorescens subsp. cellulosa contains a non-catalytic cellulose-binding domain. , 1993, The Biochemical journal.

[25]  R. Hoseney,et al.  Enzymes Increase Loaf Volume of Bread Supplemented with Starch Tailings and Insoluble Pentosans , 1994 .

[26]  J. Buchert,et al.  Application of xylanases in the pulp and paper industry , 1994 .

[27]  A. Törrönen,et al.  The Two Major Xylanases from Trichoderma Reesei: Characterization of Both Enzymes and Genes , 1992, Bio/Technology.

[28]  T. Jeffries,et al.  Differential and synergistic action of Streptomyces endoxylanases in prebleaching of kraft pulps , 1995 .

[29]  R L Campbell,et al.  Abnormally high pKa of an active-site glutamic acid residue in Bacillus circulans xylanase. The role of electrostatic interactions. , 1995, European journal of biochemistry.

[30]  J. Buchert,et al.  Effect of cooking and bleaching on the structure of xylan in conventional pine kraft pulp , 1995 .

[31]  K. Takamizawa,et al.  Xylanase IV, an Exoxylanase of Aeromonas caviae ME-1 Which Produces Xylotetraose as the Only Low-Molecular-Weight Oligosaccharide from Xylan , 1995, Applied and environmental microbiology.

[32]  Tohru Suzuki,et al.  Purification and Characterization of Aeromonas caviae ME-1 Xylanase V, Which Produces Exclusively Xylobiose from Xylan , 1994, Applied and environmental microbiology.

[33]  K. Horikoshi,et al.  Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. strain 41M-1 , 1993, Applied and environmental microbiology.

[34]  S. Withers,et al.  Crystal structure of the catalytic domain of the beta-1,4-glycanase cex from Cellulomonas fimi. , 1994, Biochemistry.

[35]  B. Henrissat,et al.  Evidence for a general role for high‐affinity non‐catalytic cellulose binding domains in microbial plant ceil wall hydroiases , 1994, Molecular microbiology.

[36]  J. Hall,et al.  Evidence for a general role for non-catalytic thermostabilizing domains in xylanases from thermophilic bacteria. , 1995, The Biochemical journal.

[37]  T. Jeffries Biodegradation of lignin and hemicelluloses , 1994 .

[38]  S. Withers,et al.  Approaches to labeling and identification of active site residues in glycosidases , 1995, Protein science : a publication of the Protein Society.

[39]  Colin Ratledge,et al.  Biochemistry of microbial degradation , 2012, Springer Netherlands.

[40]  M. Tenkanen,et al.  Stereochemistry of the hydrolysis of glycosidic linkage by endo‐β‐1,4‐xylanases of Trichoderma reesei , 1994, FEBS letters.

[41]  D. Saul,et al.  Sequence and expression of a xylanase gene from the hyperthermophile Thermotoga sp. strain FjSS3-B.1 and characterization of the recombinant enzyme and its activity on kraft pulp , 1995, Applied and environmental microbiology.

[42]  M. Bray,et al.  Identification of an essential tyrosyl residue in the binding site of Schizophyllum commune xylanase A. , 1995, Biochemistry.

[43]  Ronald D. Hatfield,et al.  Degradability of phenolic acid-hemicellulose esters: A model system , 1991 .

[44]  J. M. Fernández-Abalos,et al.  Cloning and DNA sequencing of bgaA, a gene encoding an endo-beta-1,3-1,4-glucanase, from an alkalophilic Bacillus strain (N137) , 1994, Applied and environmental microbiology.

[45]  J. Buchert,et al.  Binding of hemicellulases on isolated polysaccharide substrates , 1995 .

[46]  J. Buchert,et al.  Significance of pulp metal profile on enzyme-aided TCF bleaching , 1995 .

[47]  M. Yaguchi,et al.  Thermostabilization of the Bacillus circulans xylanase by the introduction of disulfide bonds. , 1994, Protein engineering.

[48]  W. Liebl,et al.  Identification of a novel cellulose‐binding domain the multidomain 120 kDa xylanase XynA of the hyperthermophilic bacterium Thermotoga maritima , 1995 .

[49]  M. Yaguchi,et al.  Mutational and crystallographic analyses of the active site residues of the bacillus circulans xylanase , 1994, Protein science : a publication of the Protein Society.