Carrageenan catabolism is encoded by a complex regulon in marine heterotrophic bacteria

[1]  C. E. Zobell,et al.  STUDIES ON MARINE BACTERIA. I. THE CULTURAL REQUIREMENTS OF HETEROTROPHIC AEROBES 1 , 2019 .

[2]  G. Michel,et al.  Genetic analyses unravel the crucial role of a horizontally acquired alginate lyase for brown algal biomass degradation by Zobellia galactanivorans , 2017, Environmental microbiology.

[3]  B. Henrissat,et al.  Complex pectin metabolism by gut bacteria reveals novel catalytic functions , 2017, Nature.

[4]  H. Brumer,et al.  Polysaccharide Utilization Loci: Fueling Microbial Communities , 2017, Journal of bacteriology.

[5]  Alexandre Renaux,et al.  MicroScope in 2017: an expanding and evolving integrated resource for community expertise of microbial genomes , 2016, Nucleic Acids Res..

[6]  R. Amann,et al.  Habitat and taxon as driving forces of carbohydrate catabolism in marine heterotrophic bacteria: example of the model algae-associated bacterium Zobellia galactanivorans DsijT. , 2016, Environmental microbiology.

[7]  M. Hoebeke,et al.  Matching the Diversity of Sulfated Biomolecules: Creation of a Classification Database for Sulfatases Reflecting Their Substrate Specificity , 2016, PloS one.

[8]  Peer Bork,et al.  Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees , 2016, Nucleic Acids Res..

[9]  Jeong Ah Kim,et al.  Metabolic pathway of 3,6-anhydro-D-galactose in carrageenan-degrading microorganisms , 2016, Applied Microbiology and Biotechnology.

[10]  J. Gerlt,et al.  Purification, crystallization and structural elucidation of D-galactaro-1,4-lactone cycloisomerase from Agrobacterium tumefaciens involved in pectin degradation. , 2016, Acta crystallographica. Section F, Structural biology communications.

[11]  H. Rogniaux,et al.  Enzyme-Assisted Preparation of Furcellaran-Like κ-/β-Carrageenan , 2016, Marine Biotechnology.

[12]  Marie-Agnès Dillies,et al.  SARTools: A DESeq2- and EdgeR-Based R Pipeline for Comprehensive Differential Analysis of RNA-Seq Data , 2015, bioRxiv.

[13]  Hee Taek Kim,et al.  The novel catabolic pathway of 3,6-anhydro-L-galactose, the main component of red macroalgae, in a marine bacterium. , 2015, Environmental microbiology.

[14]  Vincent Lombard,et al.  Automatic prediction of polysaccharide utilization loci in Bacteroidetes species , 2015, Bioinform..

[15]  A. Groisillier,et al.  Biochemical and structural investigation of two paralogous glycoside hydrolases from Zobellia galactanivorans: novel insights into the evolution, dimerization plasticity and catalytic mechanism of the GH117 family. , 2015, Acta crystallographica. Section D, Biological crystallography.

[16]  Eric C. Martens,et al.  Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism , 2015, Nature.

[17]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[18]  G. Michel,et al.  Microorganisms living on macroalgae: diversity, interactions, and biotechnological applications , 2014, Applied Microbiology and Biotechnology.

[19]  H. Brumer,et al.  A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes , 2014, Nature.

[20]  Pedro M. Coutinho,et al.  The carbohydrate-active enzymes database (CAZy) in 2013 , 2013, Nucleic Acids Res..

[21]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[22]  H. Rogniaux,et al.  Controlling Carrageenan Structure Using a Novel Formylglycine-Dependent Sulfatase, an Endo-4S-iota-Carrageenan Sulfatase , 2013, Marine Biotechnology.

[23]  D. Gautheret,et al.  Transcriptomic profiling of the oyster pathogen Vibrio splendidus opens a window on the evolutionary dynamics of the small RNA repertoire in the Vibrio genus. , 2012, RNA.

[24]  A. Boraston,et al.  Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes , 2012, Proceedings of the National Academy of Sciences.

[25]  T. Tonon,et al.  Characterization of the first alginolytic operons in a marine bacterium: from their emergence in marine Flavobacteriia to their independent transfers to marine Proteobacteria and human gut Bacteroides. , 2012, Environmental microbiology.

[26]  G. Michel,et al.  Biochemical and Structural Characterization of the Complex Agarolytic Enzyme System from the Marine Bacterium Zobellia galactanivorans* , 2012, The Journal of Biological Chemistry.

[27]  R. Amann,et al.  Substrate-Controlled Succession of Marine Bacterioplankton Populations Induced by a Phytoplankton Bloom , 2012, Science.

[28]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[29]  I. Yermak,et al.  Comparison of the structures of hybrid κ-/β-carrageenans extracted from Furcellaria lumbricalis and Tichocarpus crinitus , 2012 .

[30]  Clemens Vonrhein,et al.  Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER , 2012, Acta crystallographica. Section D, Biological crystallography.

[31]  Hideyuki Suzuki,et al.  α-N-Acetylgalactosaminidase from Infant-associated Bifidobacteria Belonging to Novel Glycoside Hydrolase Family 129 Is Implicated in Alternative Mucin Degradation Pathway* , 2011, The Journal of Biological Chemistry.

[32]  K. Fujita,et al.  Characterization of a Novel β-l-Arabinofuranosidase in Bifidobacterium longum , 2011, The Journal of Biological Chemistry.

[33]  D. Bertrand,et al.  Performance evaluation on a wide set of matrix-assisted laser desorption ionization matrices for the detection of oligosaccharides in a high-throughput mass spectrometric screening of carbohydrate depolymerizing enzymes. , 2011, Rapid communications in mass spectrometry : RCM.

[34]  G. Michel,et al.  Environmental and Gut Bacteroidetes: The Food Connection , 2011, Front. Microbio..

[35]  A. Groisillier,et al.  Discovery and structural characterization of a novel glycosidase family of marine origin. , 2011, Environmental microbiology.

[36]  B. Kloareg,et al.  Evolution and diversity of plant cell walls: from algae to flowering plants. , 2011, Annual review of plant biology.

[37]  Ramón Doallo,et al.  ProtTest 3: fast selection of best-fit models of protein evolution , 2011, Bioinform..

[38]  Philip R. Evans,et al.  An introduction to data reduction: space-group determination, scaling and intensity statistics , 2011, Acta crystallographica. Section D, Biological crystallography.

[39]  Robert A. Edwards,et al.  Quality control and preprocessing of metagenomic datasets , 2011, Bioinform..

[40]  G. Michel,et al.  Evaluation of reference genes for real-time quantitative PCR in the marine flavobacterium Zobellia galactanivorans. , 2011, Journal of microbiological methods.

[41]  G. Michel,et al.  Identification of catalytic residues and mechanistic analysis of family GH82 iota-carrageenases. , 2010, Biochemistry.

[42]  Alexis Criscuolo,et al.  BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments , 2010, BMC Evolutionary Biology.

[43]  J. Sonnenburg,et al.  Specificity of Polysaccharide Use in Intestinal Bacteroides Species Determines Diet-Induced Microbiota Alterations , 2010, Cell.

[44]  D. Power,et al.  MARINE-EXPRESS: taking advantage of high throughput cloning and expression strategies for the post-genomic analysis of marine organisms , 2010, Microbial cell factories.

[45]  G. Michel,et al.  Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota , 2010, Nature.

[46]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[47]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[48]  Wolfgang Kabsch,et al.  Integration, scaling, space-group assignment and post-refinement , 2010, Acta crystallographica. Section D, Biological crystallography.

[49]  M. Bott,et al.  The Nonphosphorylative Entner-Doudoroff Pathway in the Thermoacidophilic Euryarchaeon Picrophilus torridus Involves a Novel 2-Keto-3-Deoxygluconate- Specific Aldolase , 2009, Journal of bacteriology.

[50]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[51]  Brandi L. Cantarel,et al.  The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics , 2008, Nucleic Acids Res..

[52]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[53]  B. Kloareg,et al.  Degradation of λ-carrageenan by Pseudoalteromonas carrageenovora λ-carrageenase: a new family of glycoside hydrolases unrelated to κ- and ι-carrageenases , 2007 .

[54]  B. Kloareg,et al.  Degradation of lambda-carrageenan by Pseudoalteromonas carrageenovora lambda-carrageenase: a new family of glycoside hydrolases unrelated to kappa- and iota-carrageenases. , 2007, The Biochemical journal.

[55]  D. Meyer,et al.  Plant Carbohydrate Scavenging through TonB-Dependent Receptors: A Feature Shared by Phytopathogenic and Aquatic Bacteria , 2007, PloS one.

[56]  J. Gordon,et al.  Functional Genomic and Metabolic Studies of the Adaptations of a Prominent Adult Human Gut Symbiont, Bacteroides thetaiotaomicron, to the Suckling Period* , 2006, Journal of Biological Chemistry.

[57]  P. Evans,et al.  Scaling and assessment of data quality. , 2006, Acta crystallographica. Section D, Biological crystallography.

[58]  F. Studier,et al.  Protein production by auto-induction in high density shaking cultures. , 2005, Protein expression and purification.

[59]  Fei Long,et al.  REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. , 2004, Acta crystallographica. Section D, Biological crystallography.

[60]  Jan Pieter Abrahams,et al.  CRANK: new methods for automated macromolecular crystal structure solution. , 2004, Structure.

[61]  George M Sheldrick,et al.  Substructure solution with SHELXD. , 2002, Acta crystallographica. Section D, Biological crystallography.

[62]  E. Fanchon,et al.  The iota-carrageenase of Alteromonas fortis. A beta-helix fold-containing enzyme for the degradation of a highly polyanionic polysaccharide. , 2001, The Journal of biological chemistry.

[63]  B. Henrissat,et al.  The kappa-carrageenase of P. carrageenovora features a tunnel-shaped active site: a novel insight in the evolution of Clan-B glycoside hydrolases. , 2001, Structure.

[64]  B. Henrissat,et al.  ι-Carrageenases Constitute a Novel Family of Glycoside Hydrolases, Unrelated to That of κ-Carrageenases* , 2000, The Journal of Biological Chemistry.

[65]  Kim Rutherford,et al.  Artemis: sequence visualization and annotation , 2000, Bioinform..

[66]  T. Vernet,et al.  Expression, purification, crystallization and preliminary X-ray analysis of the iota-carrageenase from Alteromonas fortis. , 2000, Acta crystallographica. Section D, Biological crystallography.

[67]  B. Henrissat,et al.  iota-Carrageenases constitute a novel family of glycoside hydrolases, unrelated to that of kappa-carrageenases. , 2000, The Journal of biological chemistry.

[68]  D. Hough,et al.  An extremely thermostable aldolase from Sulfolobus solfataricus with specificity for non-phosphorylated substrates. , 1999, The Biochemical journal.

[69]  H R Powell,et al.  The Rossmann Fourier autoindexing algorithm in MOSFLM. , 1999, Acta crystallographica. Section D, Biological crystallography.

[70]  T. Vernet,et al.  Expression, purification, crystallization and preliminary x-ray analysis of the kappa-carrageenase from Pseudoalteromonas carrageenovora. , 1999, Acta crystallographica. Section D, Biological crystallography.

[71]  R D Appel,et al.  Protein identification and analysis tools in the ExPASy server. , 1999, Methods in molecular biology.

[72]  B. Henrissat,et al.  The kappa-carrageenase of the marine bacterium Cytophaga drobachiensis. Structural and phylogenetic relationships within family-16 glycoside hydrolases. , 1998, Molecular biology and evolution.

[73]  A. Vagin,et al.  MOLREP: an Automated Program for Molecular Replacement , 1997 .

[74]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[75]  P Jackson,et al.  The use of polyacrylamide-gel electrophoresis for the high-resolution separation of reducing saccharides labelled with the fluorophore 8-aminonaphthalene-1,3,6-trisulphonic acid. Detection of picomolar quantities by an imaging system based on a cooled charge-coupled device. , 1990, The Biochemical journal.

[76]  A. Salyers,et al.  Biochemical evidence that starch breakdown by Bacteroides thetaiotaomicron involves outer membrane starch-binding sites and periplasmic starch-degrading enzymes , 1989, Journal of bacteriology.

[77]  A. Salyers,et al.  Genetic evidence that outer membrane binding of starch is required for starch utilization by Bacteroides thetaiotaomicron , 1989, Journal of bacteriology.

[78]  N. S. Anderson,et al.  Evidence for a Common Structural Pattern in the Polysaccharide Sulphates of the Rhodophyceae , 1965, Nature.