The role of transcription in shaping the spatial organization of the genome

[1]  F. Jamali,et al.  Single dose pharmacokinetics and bioavailability of glucosamine in the rat. , 2002, Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques.

[2]  N. Hannett,et al.  Transcription Factors Activate Genes through the Phase-Separation Capacity of Their Activation Domains , 2018, Cell.

[3]  V. Corces,et al.  Organizational principles of 3D genome architecture , 2018, Nature Reviews Genetics.

[4]  E. Furlong,et al.  Developmental enhancers and chromosome topology , 2018, Science.

[5]  S. Lomvardas,et al.  Live-cell imaging reveals enhancer-dependent Sox2 transcription in the absence of enhancer proximity , 2018, bioRxiv.

[6]  Max W. Chang,et al.  Transcription Elongation Can Affect Genome 3D Structure , 2018, Cell.

[7]  P. Cramer,et al.  RNA polymerase II clustering through carboxy-terminal domain phase separation , 2018, Nature Structural & Molecular Biology.

[8]  Daniel S. Day,et al.  Coactivator condensation at super-enhancers links phase separation and gene control , 2018, Science.

[9]  Charles H. Li,et al.  Mediator and RNA polymerase II clusters associate in transcription-dependent condensates , 2018, Science.

[10]  W. Bickmore,et al.  Nuclear pore density controls heterochromatin reorganization during senescence , 2018, bioRxiv.

[11]  E. Furlong,et al.  The Insulator Protein CTCF Is Required for Correct Hox Gene Expression, but Not for Embryonic Development in Drosophila , 2018, Genetics.

[12]  Jia-Ming Chang,et al.  Polycomb-Dependent Chromatin Looping Contributes to Gene Silencing during Drosophila Development. , 2018, Molecular cell.

[13]  Lucas J. T. Kaaij,et al.  Systemic Loss and Gain of Chromatin Architecture throughout Zebrafish Development , 2018, Cell reports.

[14]  B. Tabak,et al.  Higher-Order Inter-chromosomal Hubs Shape 3D Genome Organization in the Nucleus , 2018, Cell.

[15]  Thomas Gregor,et al.  Dynamic interplay between enhancer-promoter topology and gene activity , 2018, Nature Genetics.

[16]  Marjon S. van Ruiten,et al.  SMC Complexes: Universal DNA Looping Machines with Distinct Regulators. , 2018, Trends in genetics : TIG.

[17]  I. Grummt,et al.  Dynamic regulation of nucleolar architecture. , 2018, Current opinion in cell biology.

[18]  B. van Steensel,et al.  TSA-Seq Mapping of Nuclear Genome Organization , 2018, bioRxiv.

[19]  Daniel Jost,et al.  TADs are 3D structural units of higher-order chromosome organization in Drosophila , 2018, Science Advances.

[20]  H. Madhani,et al.  Ten principles of heterochromatin formation and function , 2017, Nature Reviews Molecular Cell Biology.

[21]  L. Mirny,et al.  Chromatin organization by an interplay of loop extrusion and compartmental segregation , 2017, Proceedings of the National Academy of Sciences.

[22]  Judith B. Zaugg,et al.  CTCF-Mediated Chromatin Loops between Promoter and Gene Body Regulate Alternative Splicing across Individuals. , 2017, Cell systems.

[23]  J. Ellenberg,et al.  Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins , 2017, The EMBO journal.

[24]  A. Tanay,et al.  Multiscale 3D Genome Rewiring during Mouse Neural Development , 2017, Cell.

[25]  Stefan Mundlos,et al.  The three-dimensional genome: regulating gene expression during pluripotency and development , 2017, Development.

[26]  Erez Lieberman Aiden,et al.  Cohesin Loss Eliminates All Loop Domains , 2017, Cell.

[27]  Nuno A. Fonseca,et al.  Two independent modes of chromatin organization revealed by cohesin removal , 2017, Nature.

[28]  Aaron N. Chang,et al.  Non-coding Transcription Instructs Chromatin Folding and Compartmentalization to Dictate Enhancer-Promoter Communication and T Cell Fate , 2017, Cell.

[29]  Yijun Ruan,et al.  Evolutionarily Conserved Principles Predict 3D Chromatin Organization. , 2017, Molecular cell.

[30]  Daniel S. Kim,et al.  Lineage-specific dynamic and pre-established enhancer–promoter contacts cooperate in terminal differentiation , 2017, Nature Genetics.

[31]  T. Jenuwein,et al.  Major satellite repeat RNA stabilize heterochromatin retention of Suv39h enzymes by RNA-nucleosome association and RNA:DNA hybrid formation , 2017, eLife.

[32]  Wei Zhu,et al.  3D Chromatin Structures of Mature Gametes and Structural Reprogramming during Mammalian Embryogenesis , 2017, Cell.

[33]  Jing He,et al.  Allelic reprogramming of 3D chromatin architecture during early mammalian development , 2017, Nature.

[34]  Matthew E. Gosden,et al.  Tissue-specific CTCF/Cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo , 2017, Nature Cell Biology.

[35]  Robert S. Illingworth,et al.  PARP mediated chromatin unfolding is coupled to long-range enhancer activation , 2017, bioRxiv.

[36]  Mustafa Mir,et al.  Phase separation drives heterochromatin domain formation , 2017, Nature.

[37]  K. Neugebauer,et al.  Activation of transcription enforces the formation of distinct nuclear bodies in zebrafish embryos , 2017, RNA biology.

[38]  Alma L. Burlingame,et al.  Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin , 2017, Nature.

[39]  Brian D. Slaughter,et al.  Condensin II is anchored by TFIIIC and H3K4me3 in the mammalian genome and supports the expression of active dense gene clusters , 2017, Science Advances.

[40]  L. Mirny,et al.  Targeted Degradation of CTCF Decouples Local Insulation of Chromosome Domains from Genomic Compartmentalization , 2017, Cell.

[41]  Bas van Steensel,et al.  Lamina-Associated Domains: Links with Chromosome Architecture, Heterochromatin, and Gene Repression , 2017, Cell.

[42]  A. Németh,et al.  Disruption of the UBF gene induces aberrant somatic nucleolar bodies and disrupts embryo nucleolar precursor bodies. , 2017, Gene.

[43]  Peter H. L. Krijger,et al.  The Cohesin Release Factor WAPL Restricts Chromatin Loop Extension , 2017, Cell.

[44]  Niels Galjart,et al.  Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl , 2017, Nature.

[45]  Juan M. Vaquerizas,et al.  Chromatin Architecture Emerges during Zygotic Genome Activation Independent of Transcription , 2017, Cell.

[46]  E. Heard,et al.  X chromosome inactivation: new players in the initiation of gene silencing , 2017, F1000Research.

[47]  T. Misteli,et al.  Causes and consequences of nuclear gene positioning , 2017, Journal of Cell Science.

[48]  Kin Chung Lam,et al.  High-resolution TADs reveal DNA sequences underlying genome organization in flies , 2017, bioRxiv.

[49]  S. Q. Xie,et al.  Complex multi-enhancer contacts captured by Genome Architecture Mapping (GAM) , 2017, Nature.

[50]  R. Young,et al.  A Phase Separation Model for Transcriptional Control , 2017, Cell.

[51]  James Taylor,et al.  Chromatin States in Mouse Sperm Correlate with Embryonic and Adult Regulatory Landscapes. , 2017, Cell reports.

[52]  J. Brickner,et al.  Genetic and epigenetic control of the spatial organization of the genome , 2017, Molecular biology of the cell.

[53]  Frank Alber,et al.  Comprehensive characterization of neutrophil genome topology , 2017, bioRxiv.

[54]  A. Németh,et al.  Nucleolus association of chromosomal domains is largely maintained in cellular senescence despite massive nuclear reorganisation , 2016, bioRxiv.

[55]  W. Huber,et al.  The Shh Topological Domain Facilitates the Action of Remote Enhancers by Reducing the Effects of Genomic Distances , 2016, Developmental cell.

[56]  J. Wysocka,et al.  Ever-Changing Landscapes: Transcriptional Enhancers in Development and Evolution , 2016, Cell.

[57]  D. Dickel,et al.  The Ties That Bind: Mapping the Dynamic Enhancer-Promoter Interactome , 2016, Cell.

[58]  S. Russell,et al.  Regions of very low H3K27me3 partition the Drosophila genome into topological domains , 2016, bioRxiv.

[59]  Brian J. Beliveau,et al.  Spatial organization of chromatin domains and compartments in single chromosomes , 2016, Science.

[60]  Howard Y. Chang,et al.  Structural organization of the inactive X chromosome in the mouse , 2016, Nature.

[61]  Neva C. Durand,et al.  Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture , 2016, Proceedings of the National Academy of Sciences.

[62]  Michael T Laub,et al.  Transcription rate and transcript length drive formation of chromosomal interaction domain boundaries , 2016, The EMBO journal.

[63]  Jesse R. Dixon,et al.  Chromatin Domains: The Unit of Chromosome Organization. , 2016, Molecular cell.

[64]  L. Mirny,et al.  Formation of Chromosomal Domains in Interphase by Loop Extrusion , 2015, bioRxiv.

[65]  Chang Liu,et al.  Genome-wide analysis of chromatin packing in Arabidopsis thaliana at single-gene resolution , 2016, Genome research.

[66]  S. Gasser,et al.  Spatial segregation of heterochromatin: Uncovering functionality in a multicellular organism , 2016, Nucleus.

[67]  Davide Marenduzzo,et al.  Simulated binding of transcription factors to active and inactive regions folds human chromosomes into loops, rosettes and topological domains , 2016, Nucleic acids research.

[68]  J. Dekker,et al.  A Guide to Packing Your DNA , 2016, Cell.

[69]  P. O’Farrell,et al.  TALE-light imaging reveals maternally guided, H3K9me2/3-independent emergence of functional heterochromatin in Drosophila embryos , 2016, Genes & development.

[70]  L. Mirny,et al.  The 3D Genome as Moderator of Chromosomal Communication , 2016, Cell.

[71]  E. Wieschaus,et al.  Nucleation by rRNA Dictates the Precision of Nucleolus Assembly , 2016, Current Biology.

[72]  Ilya M. Flyamer,et al.  Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains , 2016, Genome research.

[73]  Shawn M. Gillespie,et al.  Insulator dysfunction and oncogene activation in IDH mutant gliomas , 2015, Nature.

[74]  Peter H. L. Krijger,et al.  CTCF Binding Polarity Determines Chromatin Looping. , 2015, Molecular cell.

[75]  K. Rippe,et al.  Alu element‐containing RNAs maintain nucleolar structure and function , 2015, The EMBO journal.

[76]  Romain Koszul,et al.  Condensin- and Replication-Mediated Bacterial Chromosome Folding and Origin Condensation Revealed by Hi-C and Super-resolution Imaging. , 2015, Molecular cell.

[77]  R. Martienssen,et al.  RNAi and heterochromatin assembly. , 2015, Cold Spring Harbor perspectives in biology.

[78]  Jeannie T. Lee,et al.  Chromosomes. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. , 2015, Science.

[79]  Nir Friedman,et al.  Mapping Nucleosome Resolution Chromosome Folding in Yeast by Micro-C , 2015, Cell.

[80]  A. Visel,et al.  Disruptions of Topological Chromatin Domains Cause Pathogenic Rewiring of Gene-Enhancer Interactions , 2015, Cell.

[81]  J. Dekker,et al.  Condensin-Driven Remodeling of X-Chromosome Topology during Dosage Compensation , 2015, Nature.

[82]  Zhaohui S. Qin,et al.  Widespread rearrangement of 3D chromatin organization underlies polycomb-mediated stress-induced silencing. , 2015, Molecular cell.

[83]  Dmitry A Afonnikov,et al.  Comparison of the three-dimensional organization of sperm and fibroblast genomes using the Hi-C approach , 2015, Genome Biology.

[84]  Michael J. Sweredoski,et al.  The Xist lncRNA directly interacts with SHARP to silence transcription through HDAC3 , 2015, Nature.

[85]  D. Duboule,et al.  Clustering of mammalian Hox genes with other H3K27me3 targets within an active nuclear domain , 2015, Proceedings of the National Academy of Sciences.

[86]  Giacomo Cavalli,et al.  The Role of Chromosome Domains in Shaping the Functional Genome , 2015, Cell.

[87]  Pedro P. Rocha,et al.  CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation , 2015, Science.

[88]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[89]  Robert S. Illingworth,et al.  Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells , 2014, Science.

[90]  C. Kooperberg,et al.  Functional redundancy in the nuclear compartmentalization of the late-replicating genome , 2014, Nucleus.

[91]  Philip D. Gregory,et al.  Reactivation of Developmentally Silenced Globin Genes by Forced Chromatin Looping , 2014, Cell.

[92]  Zhiping Weng,et al.  High-resolution mapping of chromatin packaging in mouse embryonic stem cells and sperm. , 2014, Developmental cell.

[93]  Wolfgang Huber,et al.  Enhancer loops appear stable during development and are associated with paused polymerase , 2014, Nature.

[94]  Zhaohui S. Qin,et al.  Insulator function and topological domain border strength scale with architectural protein occupancy , 2014, Genome Biology.

[95]  A. Belmont,et al.  HSP70 Transgene Directed Motion to Nuclear Speckles Facilitates Heat Shock Activation , 2014, Current Biology.

[96]  J. Lieb,et al.  What are super-enhancers? , 2014, Nature Genetics.

[97]  S. Gasser,et al.  SIR proteins and the assembly of silent chromatin in budding yeast. , 2013, Annual review of genetics.

[98]  L. Mirny,et al.  High-Resolution Mapping of the Spatial Organization of a Bacterial Chromosome , 2013, Science.

[99]  Matteo Pellegrini,et al.  Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization. , 2013, Cell stem cell.

[100]  G. Schroth,et al.  Cohesin-mediated interactions organize chromosomal domain architecture , 2013, The EMBO journal.

[101]  Job Dekker,et al.  Organization of the Mitotic Chromosome , 2013, Science.

[102]  Yun Zhu,et al.  The pluripotent genome in three dimensions is shaped around pluripotency factors , 2013, Nature.

[103]  E. Delbarre,et al.  Lamin A/C-promoter interactions specify chromatin state–dependent transcription outcomes , 2013, Genome research.

[104]  D. Duboule,et al.  A Switch Between Topological Domains Underlies HoxD Genes Collinearity in Mouse Limbs , 2013, Science.

[105]  Jennifer E. Phillips-Cremins,et al.  Architectural Protein Subclasses Shape 3D Organization of Genomes during Lineage Commitment , 2013, Cell.

[106]  W. Bickmore,et al.  Single-Cell Dynamics of Genome-Nuclear Lamina Interactions , 2013, Cell.

[107]  Tom Misteli,et al.  Functional implications of genome topology , 2013, Nature Structural &Molecular Biology.

[108]  C. Doe,et al.  Developmentally Regulated Subnuclear Genome Reorganization Restricts Neural Progenitor Competence in Drosophila , 2013, Cell.

[109]  Zhaohui S. Qin,et al.  Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains. , 2012, Molecular cell.

[110]  V. Corces,et al.  tDNA insulators and the emerging role of TFIIIC in genome organization , 2012, Transcription.

[111]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[112]  P. Gregory,et al.  Controlling Long-Range Genomic Interactions at a Native Locus by Targeted Tethering of a Looping Factor , 2012, Cell.

[113]  J. Sedat,et al.  Spatial partitioning of the regulatory landscape of the X-inactivation centre , 2012, Nature.

[114]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[115]  A. Tanay,et al.  Three-Dimensional Folding and Functional Organization Principles of the Drosophila Genome , 2012, Cell.

[116]  O. Bensaude,et al.  Inhibiting eukaryotic transcription. Which compound to choose? How to evaluate its activity? , 2011, Transcription.

[117]  B. van Steensel,et al.  Interactions among Polycomb Domains Are Guided by Chromosome Architecture , 2011, PLoS genetics.

[118]  A. Hyman,et al.  Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes , 2011, Proceedings of the National Academy of Sciences.

[119]  Benjamin Leblanc,et al.  Polycomb-Dependent Regulatory Contacts between Distant Hox Loci in Drosophila , 2011, Cell.

[120]  Nazim Madhavji,et al.  Organization , 2020, WER.

[121]  B. van Steensel,et al.  The Insulator Protein SU(HW) Fine-Tunes Nuclear Lamina Interactions of the Drosophila Genome , 2010, PloS one.

[122]  A. Belmont,et al.  Hsp70 gene association with nuclear speckles is Hsp70 promoter specific , 2010, The Journal of cell biology.

[123]  A. Lamond,et al.  High-Resolution Whole-Genome Sequencing Reveals That Specific Chromatin Domains from Most Human Chromosomes Associate with Nucleoli , 2010, Molecular biology of the cell.

[124]  A. Probst,et al.  A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. , 2010, Developmental cell.

[125]  Guillaume J. Filion,et al.  Systematic Protein Location Mapping Reveals Five Principal Chromatin Types in Drosophila Cells , 2010, Cell.

[126]  P. Flicek,et al.  Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. , 2010, Molecular cell.

[127]  A. Conesa,et al.  Initial Genomics of the Human Nucleolus , 2010, PLoS genetics.

[128]  M. Fornerod,et al.  Nucleoporins Directly Stimulate Expression of Developmental and Cell-Cycle Genes Inside the Nucleoplasm , 2010, Cell.

[129]  Jennifer A. Mitchell,et al.  Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells , 2010, Nature Genetics.

[130]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[131]  Thomas Cremer,et al.  Nuclear Architecture of Rod Photoreceptor Cells Adapts to Vision in Mammalian Evolution , 2009, Cell.

[132]  C. Bonifer,et al.  The LPS-Induced Transcriptional Upregulation of the Chicken Lysozyme Locus Involves CTCF Eviction and Noncoding RNA Transcription , 2008, Molecular cell.

[133]  L. Wessels,et al.  Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions , 2008, Nature.

[134]  W. de Laat,et al.  Maintenance of Long-Range DNA Interactions after Inhibition of Ongoing RNA Polymerase II Transcription , 2008, PloS one.

[135]  D. Hernandez-Verdun,et al.  Nucleolus: the fascinating nuclear body , 2007, Histochemistry and Cell Biology.

[136]  Cameron S. Osborne,et al.  Myc Dynamically and Preferentially Relocates to a Transcription Factory Occupied by Igh , 2007, PLoS biology.

[137]  M. Vigneron,et al.  CTCF Interacts with and Recruits the Largest Subunit of RNA Polymerase II to CTCF Target Sites Genome-Wide , 2007, Molecular and Cellular Biology.

[138]  B. Steensel,et al.  Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture–on-chip (4C) , 2006, Nature Genetics.

[139]  Anne E Carpenter,et al.  Long-Range Directional Movement of an Interphase Chromosome Site , 2006, Current Biology.

[140]  B. McStay,et al.  UBF-binding site arrays form pseudo-NORs and sequester the RNA polymerase I transcription machinery. , 2005, Genes & development.

[141]  Richard A Flavell,et al.  Long-range intrachromosomal interactions in the T helper type 2 cytokine locus , 2004, Nature Immunology.

[142]  T. Itoh,et al.  Cohesin relocation from sites of chromosomal loading to places of convergent transcription , 2004, Nature.

[143]  P. Spierer,et al.  Ectopic HP1 promotes chromosome loops and variegated silencing in Drosophila , 2001, The EMBO journal.

[144]  R. Kamakaka,et al.  RNA polymerase III and RNA polymerase II promoter complexes are heterochromatin barriers in Saccharomyces cerevisiae , 2001, The EMBO journal.

[145]  Andrew S. Belmont,et al.  Interphase movements of a DNA chromosome region modulated by VP16 transcriptional activator , 2001, Nature Cell Biology.

[146]  G. Almouzni,et al.  The Ribosomal RNA Processing Machinery Is Recruited to the Nucleolar Domain before RNA Polymerase I during Xenopus laevis Development , 2000, The Journal of cell biology.

[147]  S. Henikoff,et al.  Genetic modification of heterochromatic association and nuclear organization in Drosophila , 1996, Nature.

[148]  B. van Steensel,et al.  Localization of the glucocorticoid receptor in discrete clusters in the cell nucleus. , 1995, Journal of cell science.

[149]  D. Jackson,et al.  Visualization of focal sites of transcription within human nuclei. , 1993, The EMBO journal.