An Adaptive Local Scaling Function Representation

[1]  W. Sweldens,et al.  Quadrature formulae and asymptotic error expansions for wavelet approximations of smooth functions , 1994 .

[2]  D. Whittaker,et al.  A Course in Functional Analysis , 1991, The Mathematical Gazette.

[3]  Ann Haegemans,et al.  An asymptotic expansion in wavelet analysis and its application to accurate numerical wavelet decomposition , 1992, Numerical Algorithms.

[4]  Wolfgang Dahmen,et al.  Nonlinear functionals of wavelet expansions – adaptive reconstruction and fast evaluation , 2000, Numerische Mathematik.

[5]  Christopher Jekeli,et al.  Spherical harmonic analysis, aliasing, and filtering , 1996 .

[6]  A. Cohen Numerical Analysis of Wavelet Methods , 2003 .

[7]  I. Daubechies,et al.  Factoring wavelet transforms into lifting steps , 1998 .

[8]  Karsten Urban,et al.  Adaptive wavelet methods using semiorthogonal spline wavelets: Sparse evaluation of nonlinear functions , 2003 .

[9]  George Labahn,et al.  A Fast and Numerically Stable Euclidean-Like Algorithm for Detecting Relatively Prime Numerical Polynomials , 1998, J. Symb. Comput..

[10]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[11]  G. Strang Wavelet transforms versus Fourier transforms , 1993, math/9304214.

[12]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[13]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[14]  Jochen Fröhlich,et al.  An Adaptive Wavelet-Vaguelette Algorithm for the Solution of PDEs , 1997 .

[15]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[16]  Gene H. Golub,et al.  Matrix computations , 1983 .

[17]  H. L. Resnikoff,et al.  Wavelet analysis: the scalable structure of information , 1998 .