Investigation of carbon-silicon schottky diodes and their use as chemical sensors

Schottky barrier diodes (SBDs) with different carbon materials, namely pyrolytic carbon, glassy carbon and graphene have been investigated. The devices have been characterized structurally with HRTEM and Raman spectroscopy. From current-voltage measurements, diode parameters including the ideality factor, the Schottky barrier height and the series resistance are extracted. With graphene it is possible to modify device performance through chemical doping of its monolayer surface. The change in diode performance can be correlated with the charge transfer from various adsorbents. As a result the Graphene Diodes Sensor (GDS) can be used as a probe for various chemicals.

[1]  W. Schottky Halbleitertheorie der Sperrschicht , 1938, Naturwissenschaften.

[2]  G. Duesberg,et al.  CVD growth and processing of graphene for electronic applications , 2011 .

[3]  E. H. Rhoderick,et al.  Metal–Semiconductor Contacts , 1979 .

[4]  G. Duesberg,et al.  Carbon-silicon Schottky barrier diodes. , 2012, Small.

[5]  H C Card,et al.  Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes , 1971 .

[6]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[7]  Edward T. Yu,et al.  Deep level defects in n-type GaN grown by molecular beam epitaxy , 1998 .

[8]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[9]  Kinam Kim,et al.  Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier , 2012, Science.

[10]  J. Kuo,et al.  Opening an electrical band gap of bilayer graphene with molecular doping. , 2011, ACS nano.

[11]  K. Müllen,et al.  Transparent, conductive graphene electrodes for dye-sensitized solar cells. , 2008, Nano letters.

[12]  Chia-Chi Chang,et al.  Graphene-silicon Schottky diodes. , 2011, Nano letters.

[13]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[14]  F. Auret,et al.  Deep level transient spectroscopy of hole defects in bulk‐grown p‐GaAs using Schottky barrier diodes , 1986 .

[15]  K. Bolotin,et al.  Graphene: corrosion-inhibiting coating. , 2012, ACS nano.

[16]  T. Mikolajick,et al.  An investigation of the electrical properties of metal-insulator-silicon capacitors with pyrolytic carbon electrodes , 2010 .

[17]  A. Koster,et al.  PBMR design for the future , 2003 .

[18]  G. Duesberg,et al.  Investigation of the interfaces in Schottky diodes using equivalent circuit models. , 2013, ACS applied materials & interfaces.

[19]  W. Blau,et al.  Synthesis and Analysis of Thin Conducting Pyrolytic Carbon Films , 2012 .

[20]  K. Ng,et al.  The Physics of Semiconductor Devices , 2019, Springer Proceedings in Physics.

[21]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[22]  R. McCreery,et al.  Advanced carbon electrode materials for molecular electrochemistry. , 2008, Chemical reviews.

[23]  A. Avellan,et al.  Carbon / high-k Trench Capacitor for the 40nm DRAM Generation , 2007, 2007 IEEE Symposium on VLSI Technology.

[24]  C. Wen,et al.  Application of a thermally conductive pyrolytic graphite sheet to thermal management of a PEM fuel cell , 2008 .

[25]  Ji Won Suk,et al.  Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue. , 2013, Nano letters.

[26]  Kangho Lee,et al.  Chemically Modulated Graphene Diodes , 2013, Nano letters.

[27]  Fengnian Xia,et al.  Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. , 2010, Nano letters.

[28]  A. Obraztsov,et al.  Chemical vapour deposition: Making graphene on a large scale. , 2009, Nature nanotechnology.

[29]  Sefaattin Tongay,et al.  High efficiency graphene solar cells by chemical doping. , 2012, Nano letters.

[30]  G. Duesberg,et al.  Transparent ultrathin conducting carbon films , 2010 .

[31]  N. Mott Note on the contact between a metal and an insulator or semi-conductor , 1938 .

[32]  J. Coleman,et al.  High-yield production of graphene by liquid-phase exfoliation of graphite. , 2008, Nature nanotechnology.

[33]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[34]  J. Tour,et al.  Toward the synthesis of wafer-scale single-crystal graphene on copper foils. , 2012, ACS nano.

[35]  Guoqi Zhang,et al.  More than Moore: Creating High Value Micro/Nanoelectronics Systems , 2009 .

[36]  Derrek E. Lobo,et al.  Protecting copper from electrochemical degradation by graphene coating , 2012 .

[37]  S. Stankovich,et al.  Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide , 2007 .

[38]  Walter M. Weber,et al.  An investigation of the electrical properties of pyrolytic carbon in reduced dimensions: Vias and wires , 2010 .

[39]  G. Wallace,et al.  Processable aqueous dispersions of graphene nanosheets. , 2008, Nature nanotechnology.

[40]  W. Blau,et al.  Gas phase controlled deposition of high quality large-area graphene films. , 2010, Chemical communications.

[41]  Kwang S. Kim,et al.  Roll-to-roll production of 30-inch graphene films for transparent electrodes. , 2010, Nature nanotechnology.

[42]  B. Appleton,et al.  Tuning Schottky diodes at the many-layer-graphene/ semiconductor interface by doping , 2011 .

[43]  N. Cheung,et al.  Extraction of Schottky diode parameters from forward current-voltage characteristics , 1986 .

[44]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.