Impact-ionization-engineered avalanche photodiode arrays for free-space optical communication
暂无分享,去创建一个
William S. Rabinovich | Mike S. Ferraro | Rita Mahon | Joe C. Campbell | William R. Clark | William D. Waters | Kenneth Vaccaro | Brian D. Krejca | Philip D’Ambrosio
[1] Michael J. Kavaya,et al. Offshore wind measurements using Doppler aerosol wind lidar (DAWN) at NASA Langley Research Center , 2014, Defense + Security Symposium.
[2] G. C. Gilbreath,et al. Free-space optical communications research and demonstrations at the U.S. Naval Research Laboratory. , 2015, Applied optics.
[3] Ping Yuan,et al. Avalanche photodiodes with an impact-ionization-engineered multiplication region , 2000, LEOS 2000. 2000 IEEE Annual Meeting Conference Proceedings. 13th Annual Meeting. IEEE Lasers and Electro-Optics Society 2000 Annual Meeting (Cat. No.00CH37080).
[4] L. Andrews,et al. Laser Beam Propagation Through Random Media , 1998 .
[5] Majeed M. Hayat,et al. High-speed heterostructure avalanche photodiodes , 2003, SPIE ITCom.
[6] G. Charmaine Gilbreath,et al. Front Matter: Volume 6551 , 2007 .
[7] Christopher I. Moore,et al. Characterization of impact ionization engineered InGaAs avalanche photodiodes , 2011, Defense + Commercial Sensing.
[8] Christopher I. Moore,et al. InGaAs avalanche photodiode arrays for simultaneous communications and tracking , 2011, Optical Engineering + Applications.
[9] Christopher I. Moore,et al. Large diameter high-speed InGaAs receivers for free-space lasercom , 2007, SPIE Defense + Commercial Sensing.
[10] J.C. Campbell,et al. Recent Advances in Telecommunications Avalanche Photodiodes , 2007, Journal of Lightwave Technology.
[11] William R. Clark,et al. InAlAs-InGaAs based avalanche photodiodes for next generation eye-safe optical receivers , 2007, Photonics North.
[12] Philip Waldron,et al. Perforated Mach-Zehnder interferometer evanescent field sensor in silicon-on-insulator , 2007, Photonics North.
[13] Christopher C. Davis,et al. Front Matter: Volume 8162 , 2011 .
[14] Christopher I. Moore,et al. Large area adaptive avalanche photodetector arrays for free-space optical communication , 2008, Optical Engineering + Applications.
[15] William R. Clark,et al. Determination of Quantum Efficiency in In$_{\bf {0.53}}$ Ga$_{\bf{0.47}}$As-InP-Based APDs , 2014, Journal of Lightwave Technology.
[16] Rita Mahon,et al. InAlAs/InGaAs avalanche photodiode arrays for free space optical communication. , 2015, Applied optics.
[17] R. J. McIntyre,et al. A new look at impact ionization-Part I: A theory of gain, noise, breakdown probability, and frequency response , 1999 .
[18] Mike Ferraro,et al. Atmospheric turbulence effects measured along horizontal-path optical retro-reflector links. , 2012, Applied optics.
[19] Rita Mahon,et al. Irradiance correlations in retro-reflected beams. , 2015, Applied optics.
[20] Majeed M. Hayat,et al. Non-Local Model for the Spatial Distribution of Impact Ionization Events in Avalanche Photodiodes , 2014, IEEE Photonics Technology Letters.
[21] Zhiwen Lu,et al. Monte Carlo Simulation of InAlAs/InAlGaAs Tandem Avalanche Photodiodes , 2012, IEEE Journal of Quantum Electronics.
[22] Stephen B. Alexander. Optical Communication Receiver Design , 1997 .
[23] Christopher C. Davis,et al. Front Matter: Volume 7091 , 2008 .
[24] Bahaa E. A. Saleh,et al. Dead-space-based theory correctly predicts excess noise factor for thin GaAs and AlGaAs avalanche photodiodes , 2000 .
[25] C. Hu,et al. A new look at impact ionization-Part II: Gain and noise in short avalanche photodiodes , 1999 .
[26] Linda M. Thomas,et al. Front Matter: Volume 8038 , 2011 .
[27] Harris R. Burris,et al. Integration of a concentric five element InAIAs/InGaAs avalanche photodiode array in a stabilized bi-static optical assembly , 2014, Defense + Security Symposium.