Comparative genomics provides insights into the lifestyle and reveals functional heterogeneity of dark septate endophytic fungi

[1]  Christina A. Cuomo,et al.  Exploring the genomic diversity of black yeasts and relatives (Chaetothyriales, Ascomycota) , 2017, Studies in mycology.

[2]  U. Güldener,et al.  Globally distributed root endophyte Phialocephala subalpina links pathogenic and saprophytic lifestyles , 2016, BMC Genomics.

[3]  G. Kovács,et al.  Interspecific metabolic diversity of root-colonizing endophytic fungi revealed by enzyme activity tests. , 2016, FEMS microbiology ecology.

[4]  Francis Martin,et al.  Unearthing the roots of ectomycorrhizal symbioses , 2016, Nature Reviews Microbiology.

[5]  I. Dickie,et al.  Ecology of ericoid mycorrhizal fungi , 2016 .

[6]  B. Henrissat,et al.  Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum , 2016, Nature Communications.

[7]  J. Maciá‐Vicente,et al.  The local environment determines the assembly of root endophytic fungi at a continental scale. , 2016, Environmental microbiology.

[8]  Alga Zuccaro,et al.  Dissecting endophytic lifestyle along the parasitism/mutualism continuum in Arabidopsis. , 2016, Current opinion in microbiology.

[9]  Philipp C. Münch,et al.  Survival trade-offs in plant roots during colonization by closely related beneficial and pathogenic fungi , 2016, Nature Communications.

[10]  J. Spatafora,et al.  Draft Genome Sequence of Microdochium bolleyi, a Dark Septate Fungal Endophyte of Beach Grass , 2016, Genome Announcements.

[11]  P. Schulze-Lefert,et al.  Root Endophyte Colletotrichum tofieldiae Confers Plant Fitness Benefits that Are Phosphate Status Dependent , 2016, Cell.

[12]  J. Spatafora,et al.  Full Genome of Phialocephala scopiformis DAOMC 229536, a Fungal Endophyte of Spruce Producing the Potent Anti-Insectan Compound Rugulosin , 2016, Genome Announcements.

[13]  Neil D. Rawlings,et al.  Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors , 2015, Nucleic Acids Res..

[14]  Kazuaki Tanaka,et al.  Revision of the Massarineae (Pleosporales, Dothideomycetes) , 2015, Studies in mycology.

[15]  G. Berg,et al.  The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes , 2015, Microbiology and Molecular Reviews.

[16]  Philippe Vandenkoornhuyse,et al.  The importance of the microbiome of the plant holobiont. , 2015, The New phytologist.

[17]  S. Reissmann,et al.  Fungal effectors and plant susceptibility. , 2015, Annual review of plant biology.

[18]  Hanhong Bae,et al.  The diversity of fungal genome , 2015, Biological Procedures Online.

[19]  J. Groenewald,et al.  Dark septate endophytic pleosporalean genera from semiarid areas , 2015, Persoonia.

[20]  Bernard Henrissat,et al.  Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists , 2015, Nature Genetics.

[21]  Chengshu Wang,et al.  Genomic and transcriptomic analysis of the endophytic fungus Pestalotiopsis fici reveals its lifestyle and high potential for synthesis of natural products , 2015, BMC Genomics.

[22]  V. Barbe,et al.  Transposable element-assisted evolution and adaptation to host plant within the Leptosphaeria maculans-Leptosphaeria biglobosa species complex of fungal pathogens , 2014, BMC Genomics.

[23]  R. Verma,et al.  New subfamilies of major intrinsic proteins in fungi suggest novel transport properties in fungal channels: implications for the host-fungal interactions , 2014, BMC Evolutionary Biology.

[24]  R. Verma,et al.  New subfamilies of major intrinsic proteins in fungi suggest novel transport properties in fungal channels: implications for the host-fungal interactions , 2014, BMC Evolutionary Biology.

[25]  Chen Wang,et al.  The rice endophyte Harpophora oryzae genome reveals evolution from a pathogen to a mutualistic endophyte , 2014, Scientific Reports.

[26]  D. Hibbett,et al.  Latent homology and convergent regulatory evolution underlies the repeated emergence of yeasts , 2014, Nature Communications.

[27]  A. Salamov,et al.  Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi , 2014, Proceedings of the National Academy of Sciences.

[28]  M. Thon,et al.  Draft Genome Sequence of Colletotrichum acutatum Sensu Lato (Colletotrichum fioriniae) , 2014, Genome Announcements.

[29]  B. Henrissat,et al.  Genome sequencing provides insight into the reproductive biology, nutritional mode and ploidy of the fern pathogen Mixia osmundae. , 2014, The New phytologist.

[30]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[31]  Koichiro Tamura,et al.  MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. , 2013, Molecular biology and evolution.

[32]  Inna Dubchak,et al.  MycoCosm portal: gearing up for 1000 fungal genomes , 2013, Nucleic Acids Res..

[33]  Pedro M. Coutinho,et al.  The carbohydrate-active enzymes database (CAZy) in 2013 , 2013, Nucleic Acids Res..

[34]  J. Zwiazek,et al.  Phylogenetic analysis of fungal aquaporins provides insight into their possible role in water transport of mycorrhizal associations , 2013 .

[35]  B. Henrissat,et al.  Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes , 2013, Biotechnology for Biofuels.

[36]  Josefa González,et al.  The impact of transposable elements in environmental adaptation , 2013, Molecular ecology.

[37]  Y. Narusaka,et al.  Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. , 2013, The New phytologist.

[38]  Elissaveta G. Arnaoudova,et al.  Plant-Symbiotic Fungi as Chemical Engineers: Multi-Genome Analysis of the Clavicipitaceae Reveals Dynamics of Alkaloid Loci , 2013, PLoS genetics.

[39]  K. Harper,et al.  The effects of fungal root endophytes on plant growth: a meta-analysis , 2013, Mycorrhiza.

[40]  A. Salamov,et al.  Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes Fungi , 2012, PLoS pathogens.

[41]  D. Silvestro,et al.  raxmlGUI: a graphical front-end for RAxML , 2012, Organisms Diversity & Evolution.

[42]  Manolis Kellis,et al.  TreeFix: Statistically Informed Gene Tree Error Correction Using Species Trees , 2012, Systematic biology.

[43]  Neil Moore,et al.  Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses , 2012, Nature Genetics.

[44]  S. Raffaele,et al.  Genome evolution in filamentous plant pathogens: why bigger can be better , 2012, Nature Reviews Microbiology.

[45]  G. Kovács,et al.  The Dark Side Is Not Fastidious – Dark Septate Endophytic Fungi of Native and Invasive Plants of Semiarid Sandy Areas , 2012, PloS one.

[46]  A. Jumpponen,et al.  Septate endophyte colonization and host responses of grasses and forbs native to a tallgrass prairie , 2012, Mycorrhiza.

[47]  A. Casadevall,et al.  Synthesis and assembly of fungal melanin , 2012, Applied Microbiology and Biotechnology.

[48]  Edith D. Wong,et al.  Saccharomyces Genome Database: the genomics resource of budding yeast , 2011, Nucleic Acids Res..

[49]  S. Brunak,et al.  SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.

[50]  U. Güldener,et al.  Endophytic Life Strategies Decoded by Genome and Transcriptome Analyses of the Mutualistic Root Symbiont Piriformospora indica , 2011, PLoS pathogens.

[51]  C. Slamovits,et al.  Conserved Meiotic Machinery in Glomus spp., a Putatively Ancient Asexual Fungal Lineage , 2011, Genome biology and evolution.

[52]  Andrea Porras‐Alfaro,et al.  Hidden fungi, emergent properties: endophytes and microbiomes. , 2011, Annual review of phytopathology.

[53]  A. Salamov,et al.  The Plant Cell Wall–Decomposing Machinery Underlies the Functional Diversity of Forest Fungi , 2011, Science.

[54]  Shiv D. Kale,et al.  A Secreted Effector Protein of Laccaria bicolor Is Required for Symbiosis Development , 2011, Current Biology.

[55]  K. Newsham A meta-analysis of plant responses to dark septate root endophytes. , 2011, The New phytologist.

[56]  A. Salamov,et al.  Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma , 2011, Genome Biology.

[57]  Kendra J. Lipinski,et al.  Diversity and distribution of soil fungal communities in a semiarid grassland , 2011, Mycologia.

[58]  A. Gnirke,et al.  High-quality draft assemblies of mammalian genomes from massively parallel sequence data , 2010, Proceedings of the National Academy of Sciences.

[59]  Pari Skamnioti,et al.  Genome Expansion and Gene Loss in Powdery Mildew Fungi Reveal Tradeoffs in Extreme Parasitism , 2010, Science.

[60]  G. Sherlock,et al.  Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads , 2010, BMC Genomics.

[61]  Bernard Henrissat,et al.  Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis , 2010, Nature.

[62]  R. Blanchette,et al.  An Antarctic Hot Spot for Fungi at Shackleton's Historic Hut on Cape Royds , 2010, Microbial Ecology.

[63]  Jonathan D. G. Jones,et al.  Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans , 2009, Nature.

[64]  Andrew F. S. Taylor,et al.  Friend or foe? Evolutionary history of glycoside hydrolase family 32 genes encoding for sucrolytic activity in fungi and its implications for plant-fungal symbioses , 2009, BMC Evolutionary Biology.

[65]  T. Sieber,et al.  Dark septate endophytes (DSE) of the Phialocephala fortinii s.l. – Acephala applanata species complex in tree roots: classification, population biology, and ecology , 2008 .

[66]  Brandi L. Cantarel,et al.  The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics , 2008, Nucleic Acids Res..

[67]  A. Löytynoja,et al.  Phylogeny-Aware Gap Placement Prevents Errors in Sequence Alignment and Evolutionary Analysis , 2008, Science.

[68]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[69]  C. Wagg,et al.  Associations between microfungal endophytes and roots: do structural features indicate function? , 2008 .

[70]  D. Natvig,et al.  Novel Root Fungal Consortium Associated with a Dominant Desert Grass , 2008, Applied and Environmental Microbiology.

[71]  Y. Van de Peer,et al.  The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis , 2008, Nature.

[72]  A. Jumpponen,et al.  Seasonal and temporal dynamics of arbuscular mycorrhizal and dark septate endophytic fungi in a tallgrass prairie ecosystem are minimally affected by nitrogen enrichment , 2008, Mycorrhiza.

[73]  F. Schmidt Meta-Analysis , 2008 .

[74]  Gerard Talavera,et al.  Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. , 2007, Systematic biology.

[75]  R. Blanchette,et al.  Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica , 2006 .

[76]  J. Badger,et al.  Comparative analysis of programmed cell death pathways in filamentous fungi , 2005, BMC Genomics.

[77]  B. Schulz,et al.  The endophytic continuum. , 2005, Mycological research.

[78]  C. Voigt,et al.  A secreted lipase of Fusarium graminearum is a virulence factor required for infection of cereals. , 2005, The Plant journal : for cell and molecular biology.

[79]  K. Langfelder,et al.  Biosynthesis of fungal melanins and their importance for human pathogenic fungi. , 2003, Fungal genetics and biology : FG & B.

[80]  J. Barrow Atypical morphology of dark septate fungal root endophytes of Bouteloua in arid southwestern USA rangelands , 2003, Mycorrhiza.

[81]  G. Kovács,et al.  Mycorrhizae and other root-associated fungal structures of the plants of a sandy grassland on the Great Hungarian Plain , 2002 .

[82]  Anton J. Enright,et al.  An efficient algorithm for large-scale detection of protein families. , 2002, Nucleic acids research.

[83]  C. Leyval,et al.  Extensive fungal diversity in plant roots. , 2002, Science.

[84]  D. Prusky,et al.  Local modulation of host pH by Colletotrichum species as a mechanism to increase virulence. , 2001, Molecular Plant-Microbe Interactions.

[85]  A. Vershon,et al.  Transcriptional regulation of meiosis in yeast. , 2000, Current opinion in cell biology.

[86]  J. Trappe,et al.  Utilization of major detrital substrates by dark-septate, root endophytes' , 2000 .

[87]  K. Kwon-Chung,et al.  A Developmentally Regulated Gene Cluster Involved in Conidial Pigment Biosynthesis in Aspergillus fumigatus , 1999, Journal of bacteriology.

[88]  K. Saikkonen,et al.  FUNGAL ENDOPHYTES: A Continuum of Interactions with Host Plants , 1998 .

[89]  J. Trappe,et al.  Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. , 1998, The New phytologist.

[90]  K. Kwon-Chung,et al.  The Developmentally Regulated alb1 Gene ofAspergillus fumigatus: Its Role in Modulation of Conidial Morphology and Virulence , 1998, Journal of bacteriology.

[91]  Søren Brunak,et al.  A Neural Network Method for Identification of Prokaryotic and Eukaryotic Signal Peptides and Prediction of their Cleavage Sites , 1997, Int. J. Neural Syst..

[92]  Howard Rosenbaum,et al.  Effects of reading proficiency on embedded stem priming in primary school children , 2021 .

[93]  D. Read,et al.  Fungal associations of roots of dominant and sub-dominant plants in high-alpine vegetation systems with special reference to mycorrhiza , 1980, Oecologia.

[94]  Marx Dh The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. II. Production, identification, and biological activity of antibiotics produced by Leucopaxillus cerealis var. piceina. , 1969 .

[95]  Bernard Henrissat,et al.  The genome of Xylona heveae provides a window into fungal endophytism. , 2016, Fungal biology.

[96]  S. Fontenla,et al.  Is the prominent ericoid mycorrhizal fungus Rhizoscyphus ericae absent in the Southern Hemisphere’s Ericaceae? A case study on the diversity of root mycobionts in Gaultheria spp. from northwest Patagonia, Argentina , 2014, Mycorrhiza.

[97]  P. Franken,et al.  Fungal Endophytes in Plant Roots: Taxonomy, Colonization Patterns, and Functions , 2013 .

[98]  O. Alizadeh,et al.  Mycorrhizal Symbiosis , 1986, Forest Science.

[99]  M. Vainstein,et al.  Metarhizium anisopliae lipolytic activity plays a pivotal role in Rhipicephalus (Boophilus) microplus infection. , 2010, Fungal biology.

[100]  D. Natvig,et al.  A general suite of fungal endophytes dominate the roots of two dominant grasses in a semiarid grassland , 2010 .

[101]  A. Arnold,et al.  Fungal endophytes: diversity and functional roles. , 2009, The New phytologist.

[102]  A. Jumpponen,et al.  Seeking the elusive function of the root-colonising dark septate endophytic fungi , 2005 .

[103]  R. Currah,et al.  Microfungal endophytes in roots , 2005 .

[104]  A. Covarrubias,et al.  Characterization of an Extracellular Serine Protease of Fusarium eumartii and its Action on Pathogenesis Related Proteins , 2004, European Journal of Plant Pathology.

[105]  Jerry D. Weast When Bigger Can Be Better. , 1997 .

[106]  O. Petrini Fungal Endophytes of Tree Leaves , 1991 .

[107]  S. S. Hirano,et al.  Microbial Ecology of Leaves , 1991, Brock/Springer Series in Contemporary Bioscience.

[108]  D. Marx The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. II. Production, identification, and biological activity of antibiotics produced by Leucopaxillus cerealis var. piceina. , 1969, Phytopathology.