Selecting the median

Improving a long-standing result of Schonhage, Paterson, and Pippenger [ J. Comput. System Sci., 13 (1976), pp. 184--199] we show that the median of a set containing $n$ elements can always be found using at most $c \cdot n$ comparisons, where c<2.95.

[1]  Ira Pohl,et al.  A sorting problem and its complexity , 1972, CACM.

[2]  Manuel Blum,et al.  Time Bounds for Selection , 1973, J. Comput. Syst. Sci..

[3]  F. Yao ON LOWER BOUNDS FOR SELECTION PROBLEMS , 1974 .

[4]  Ronald L. Rivest,et al.  Expected time bounds for selection , 1975, Commun. ACM.

[5]  Arnold Schönhage,et al.  Finding the Median , 1976, J. Comput. Syst. Sci..

[6]  Chee-Keng Yap,et al.  New upper bounds for selection , 1976, CACM.

[7]  Laurent Hyafil Bounds for Selection , 1976, SIAM J. Comput..

[8]  Harold N. Gabow,et al.  A Counting Approach to Lower Bounds for Selection Problems , 1979, JACM.

[9]  Paul K. Stockmeyer,et al.  On the Optimality of Linear Merge , 1980, SIAM J. Comput..

[10]  David G. Kirkpatrick A Unified Lower Bound for Selection and Set Partitioning Problems , 1981, JACM.

[11]  Martin Aigner Selecting the top three elements , 1982, Discret. Appl. Math..

[12]  Prakash V. Ramanan,et al.  New Algorithms for Selection , 1984, J. Algorithms.

[13]  Samuel W. Bent,et al.  Finding the median requires 2n comparisons , 1985, STOC '85.

[14]  J. Ian Munro,et al.  Average case selection , 1989, JACM.

[15]  Jutta Eusterbrock Errata to "Selecting the Top Three Elements" by M. Aigner: A Result of a Computer-Assisted Proof Search , 1993, Discret. Appl. Math..

[16]  Uri Zwick,et al.  Finding percentile elements , 1995, Proceedings Third Israel Symposium on the Theory of Computing and Systems.

[17]  Selecting the median , 1995, SODA 1995.

[18]  Mike Paterson,et al.  Progress in Selection , 1996, SWAT.

[19]  Uri Zwick,et al.  Finding the αn-th largest element , 1996, Comb..