Information diffusion prediction in mobile social networks with hydrodynamic model

Mobile social networks have gained tremendous popularity among hundreds of millions of Internet users due to their fast information spreading and strong inter-person influence. However, the high complexity of social interactions and the intrinsic dynamics of mobile social networks make it challenging to model the spreading mechanism delicately and enable precise prediction of information diffusion. In this paper, we are the first to exploit physical hydrodynamics to model the process of information diffusion in mobile social networks. With our proposed hydrodynamic information diffusion prediction model (hydro-IDP), we can accurately capture the information diffusion process from both temporal and spatial perspectives, and shed more light on the information spreading characteristics (e.g., information popularity, user influence, social platform diffusivity, etc.). We also conduct a large-scale trace-driven validation to verify the accuracy of our model. The results show that the hydro-IDP model is competent to characterize and predict the process of information propagation in mobile social networks.

[1]  Kristina Lerman,et al.  What Stops Social Epidemics? , 2011, ICWSM.

[2]  Haiyan Wang,et al.  On the Existence of Positive Solutions of Fourth-Order Ordinary Differential Equations , 1995 .

[3]  Jure Leskovec,et al.  Inferring networks of diffusion and influence , 2010, KDD.

[4]  Alessandro Flammini,et al.  Erratum: Optimal Network Modularity for Information Diffusion [Phys. Rev. Lett. 113, 088701 (2014)] , 2014 .

[5]  Claus-Dieter Munz,et al.  New Algorithms for Ultra-relativistic Numerical Hydrodynamics , 1993 .

[6]  Jure Leskovec,et al.  Correcting for missing data in information cascades , 2011, WSDM '11.

[7]  James D. Murray Mathematical Biology: I. An Introduction , 2007 .

[8]  Cécile Favre,et al.  Information diffusion in online social networks: a survey , 2013, SGMD.

[9]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[10]  W. Marsden I and J , 2012 .

[11]  Kristina Lerman,et al.  Information Contagion: An Empirical Study of the Spread of News on Digg and Twitter Social Networks , 2010, ICWSM.

[12]  Jure Leskovec,et al.  Modeling Information Diffusion in Implicit Networks , 2010, 2010 IEEE International Conference on Data Mining.

[13]  K. Selçuk Candan,et al.  How Does the Data Sampling Strategy Impact the Discovery of Information Diffusion in Social Media? , 2010, ICWSM.

[14]  Ren-Hung Hwang,et al.  A buffer-aware HTTP live streaming approach for SDN-enabled 5G wireless networks , 2015, IEEE Network.

[15]  Cheng-Xiang Wang,et al.  5G Ultra-Dense Cellular Networks , 2015, IEEE Wireless Communications.

[16]  José A. Langa,et al.  Permanence and Asymptotically Stable Complete Trajectories for Nonautonomous Lotka-Volterra Models with Diffusion , 2009, SIAM J. Math. Anal..

[17]  Alessandro Flammini,et al.  Optimal network clustering for information diffusion , 2014, Physical review letters.

[18]  Wolfgang Kellerer,et al.  Outtweeting the Twitterers - Predicting Information Cascades in Microblogs , 2010, WOSN.

[19]  Xiaohua Jia,et al.  Characterizing Information Diffusion in Online Social Networks with Linear Diffusive Model , 2013, 2013 IEEE 33rd International Conference on Distributed Computing Systems.

[20]  S. Shen,et al.  Numerical methods in fluid dynamics , 1978 .

[21]  Jure Leskovec,et al.  Information diffusion and external influence in networks , 2012, KDD.

[22]  Scott Counts,et al.  Comparing Information Diffusion Structure in Weblogs and Microblogs , 2010, ICWSM.

[23]  Haiyan Wang,et al.  Modeling Information Diffusion in Online Social Networks with Partial Differential Equations , 2013, Surveys and Tutorials in the Applied Mathematical Sciences.

[24]  Le Song,et al.  Influence Function Learning in Information Diffusion Networks , 2014, ICML.

[25]  K. J. Ray Liu,et al.  Modeling information diffusion dynamics over social networks , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[26]  Virgílio A. F. Almeida,et al.  Characterizing user behavior in online social networks , 2009, IMC '09.

[27]  S MinlaK,et al.  A Network and Device Aware QoS Approach For Cloud-Based Mobile Streaming , 2015 .

[28]  Naren Ramakrishnan,et al.  Epidemiological modeling of news and rumors on Twitter , 2013, SNAKDD '13.

[29]  Hakim Hacid,et al.  A predictive model for the temporal dynamics of information diffusion in online social networks , 2012, WWW.

[30]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[31]  Le Song,et al.  Estimating Diffusion Network Structures: Recovery Conditions, Sample Complexity & Soft-thresholding Algorithm , 2014, ICML.

[32]  Hongyuan Zha,et al.  Back to the Past: Source Identification in Diffusion Networks from Partially Observed Cascades , 2015, AISTATS.

[33]  Piet Van Mieghem,et al.  Digging in the Digg Social News Website , 2011, IEEE Transactions on Multimedia.

[34]  Jiafu Wan,et al.  Cloud-assisted real-time transrating for http live streaming , 2013, IEEE Wireless Communications.

[35]  Kristina Lerman,et al.  A framework for quantitative analysis of cascades on networks , 2010, WSDM '11.

[36]  Mohsen Guizani,et al.  5G wireless backhaul networks: challenges and research advances , 2014, IEEE Network.