A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans

The fundamental aim of genetics is to understand how an organism's phenotype is determined by its genotype, and implicit in this is predicting how changes in DNA sequence alter phenotypes. A single network covering all the genes of an organism might guide such predictions down to the level of individual cells and tissues. To validate this approach, we computationally generated a network covering most C. elegans genes and tested its predictive capacity. Connectivity within this network predicts essentiality, identifying this relationship as an evolutionarily conserved biological principle. Critically, the network makes tissue-specific predictions—we accurately identify genes for most systematically assayed loss-of-function phenotypes, which span diverse cellular and developmental processes. Using the network, we identify 16 genes whose inactivation suppresses defects in the retinoblastoma tumor suppressor pathway, and we successfully predict that the dystrophin complex modulates EGF signaling. We conclude that an analogous network for human genes might be similarly predictive and thus facilitate identification of disease genes and rational therapeutic targets.

[1]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[2]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[3]  M. Han,et al.  Ras is required for a limited number of cell fates and not for general proliferation in Caenorhabditis elegans , 1997, Molecular and cellular biology.

[4]  H. Horvitz,et al.  lin-35 and lin-53, Two Genes that Antagonize a C. elegans Ras Pathway, Encode Proteins Similar to Rb and Its Binding Protein RbAp48 , 1998, Cell.

[5]  angesichts der Corona-Pandemie,et al.  UPDATE , 1973, The Lancet.

[6]  D. Eisenberg,et al.  A combined algorithm for genome-wide prediction of protein function , 1999, Nature.

[7]  Michael G. Walker,et al.  Pharmaceutical Target Discovery Using Guilt-by-Association: Schizophrenia and Parkinson's Disease Genes , 1999, ISMB.

[8]  V. Reinke,et al.  A global profile of germline gene expression in C. elegans. , 2000, Molecular cell.

[9]  Christian E. V. Storm,et al.  Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. , 2001, Journal of molecular biology.

[10]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[11]  V. Reinke,et al.  Genome-wide analysis of developmental and sex-regulated gene expression profiles in Caenorhabditis elegans. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[12]  H. Jarrett,et al.  Dystrophin-glycoprotein complex and Ras and Rho GTPase signaling are altered in muscle atrophy. , 2002, American journal of physiology. Cell physiology.

[13]  Stuart K. Kim,et al.  Downstream targets of let-60 Ras in Caenorhabditis elegans. , 2002, Developmental biology.

[14]  Kyle Duke,et al.  Transcriptional Profile of Aging in C. elegans , 2002, Current Biology.

[15]  L. Ségalat Dystrophin and functionally related proteins in the nematode Caenorhabditis elegans , 2002, Neuromuscular Disorders.

[16]  Susumu Goto,et al.  The KEGG databases at GenomeNet , 2002, Nucleic Acids Res..

[17]  Y. Dong,et al.  Systematic functional analysis of the Caenorhabditis elegans genome using RNAi , 2003, Nature.

[18]  Stuart K. Kim,et al.  Global analysis of dauer gene expression in Caenorhabditis elegans , 2003, Development.

[19]  Joshua M. Stuart,et al.  A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules , 2003, Science.

[20]  James R. Knight,et al.  A Protein Interaction Map of Drosophila melanogaster , 2003, Science.

[21]  B. Palsson,et al.  Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based analysis of a genome-scale reconstructed metabolic network , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Edward M Marcotte,et al.  Discovery of uncharacterized cellular systems by genome-wide analysis of functional linkages , 2003, Nature Biotechnology.

[23]  A. Owen,et al.  A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae) , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Hanno Steen,et al.  Development of human protein reference database as an initial platform for approaching systems biology in humans. , 2003, Genome research.

[25]  David Botstein,et al.  The Stanford Microarray Database: data access and quality assessment tools , 2003, Nucleic Acids Res..

[26]  Christian von Mering,et al.  STRING: a database of predicted functional associations between proteins , 2003, Nucleic Acids Res..

[27]  Dong Xu,et al.  Global protein function annotation through mining genome-scale data in yeast Saccharomyces cerevisiae. , 2004, Nucleic acids research.

[28]  S. L. Wong,et al.  A Map of the Interactome Network of the Metazoan C. elegans , 2004, Science.

[29]  Matteo Pellegrini,et al.  Prolinks: a database of protein functional linkages derived from coevolution , 2004, Genome Biology.

[30]  Shailesh V. Date,et al.  A Probabilistic Functional Network of Yeast Genes , 2004, Science.

[31]  Razvan C. Bunescu,et al.  Consolidating the set of known human protein-protein interactions in preparation for large-scale mapping of the human interactome , 2005, Genome Biology.

[32]  E. Birney,et al.  Reactome: a knowledgebase of biological pathways , 2004, Nucleic Acids Research.

[33]  G. Ruvkun,et al.  A systematic RNAi screen for longevity genes in C. elegans. , 2005, Genes & development.

[34]  Ian M. Donaldson,et al.  The Biomolecular Interaction Network Database and related tools 2005 update , 2004, Nucleic Acids Res..

[35]  Marc Vidal,et al.  Predictive models of molecular machines involved in Caenorhabditis elegans early embryogenesis , 2005, Nature.

[36]  A. Hsu,et al.  New Genes Tied to Endocrine, Metabolic, and Dietary Regulation of Lifespan from a Caenorhabditis elegans Genomic RNAi Screen , 2005, PLoS genetics.

[37]  Kimberly Van Auken,et al.  WormBase: a comprehensive data resource for Caenorhabditis biology and genomics , 2004, Nucleic Acids Res..

[38]  A. Fraser,et al.  Loss of LIN-35, the Caenorhabditis elegans ortholog of the tumor suppressor p105Rb, results in enhanced RNA interference , 2006, Genome Biology.

[39]  Harrison W. Gabel,et al.  Somatic misexpression of germline P granules and enhanced RNA interference in retinoblastoma pathway mutants , 2005, Nature.

[40]  T. Barrette,et al.  Probabilistic model of the human protein-protein interaction network , 2005, Nature Biotechnology.

[41]  Judith A. Blake,et al.  The Mouse Genome Database (MGD): from genes to mice—a community resource for mouse biology , 2004, Nucleic Acids Res..

[42]  S. L. Wong,et al.  Towards a proteome-scale map of the human protein–protein interaction network , 2005, Nature.

[43]  Christian A. Grove,et al.  A Gene-Centered C. elegans Protein-DNA Interaction Network , 2006, Cell.

[44]  Weiwei Zhong,et al.  Genome-Wide Prediction of C. elegans Genetic Interactions , 2006, Science.

[45]  M. Sundaram,et al.  RTK/Ras/MAPK signaling. , 2006, WormBook : the online review of C. elegans biology.

[46]  A. Fraser,et al.  Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways , 2006, Nature Genetics.

[47]  Min Han,et al.  Diverse Chromatin Remodeling Genes Antagonize the Rb-Involved SynMuv Pathways in C. elegans , 2006, PLoS genetics.

[48]  Mike Tyers,et al.  BioGRID: a general repository for interaction datasets , 2005, Nucleic Acids Res..

[49]  K. N. Chandrika,et al.  Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets , 2006, Nature Genetics.

[50]  E. Marcotte,et al.  An Improved, Bias-Reduced Probabilistic Functional Gene Network of Baker's Yeast, Saccharomyces cerevisiae , 2007, PloS one.

[51]  G. Ruvkun,et al.  Lifespan Regulation by Evolutionarily Conserved Genes Essential for Viability , 2007, PLoS genetics.