Standard and Non-standard CAGD Tools for Isogeometric Analysis: A Tutorial
暂无分享,去创建一个
[1] Marian Neamtu,et al. What is the natural generalization of univariate splines to higher dimensions , 2001 .
[2] C. Micchelli,et al. Blossoming begets B -spline bases built better by B -patches , 1992 .
[3] P. Sattayatham,et al. GB-splines of arbitrary order , 1999 .
[4] Charles A. Micchelli,et al. Total positivity and its applications , 1996 .
[5] Tim N. T. Goodman,et al. Blossoming beyond Extended Chebyshev Spaces , 2001, J. Approx. Theory.
[6] Rida T. Farouki,et al. On the optimal stability of the Bernstein basis , 1996, Math. Comput..
[7] Marie-Laurence Mazure,et al. How to build all Chebyshevian spline spaces good for geometric design? , 2011, Numerische Mathematik.
[8] Tim N. T. Goodman,et al. Total Positivity and the Shape of Curves , 1996 .
[9] Hendrik Speleers,et al. Multivariate normalized Powell-Sabin B-splines and quasi-interpolants , 2013, Comput. Aided Geom. Des..
[10] Nira Dyn,et al. Exponentials Reproducing Subdivision Schemes , 2003, Found. Comput. Math..
[11] Hendrik Speleers,et al. Weight control for modelling with NURPS surfaces , 2007, Comput. Aided Geom. Des..
[12] Paul L. Butzer,et al. Observations on the history of central B-splines , 1988, Archive for History of Exact Sciences.
[13] Tom Lyche,et al. Interpolation with Exponential B-Splines in Tension , 1993, Geometric Modelling.
[14] Juan Manuel Peña,et al. Shape preserving representations and optimality of the Bernstein basis , 1993, Adv. Comput. Math..
[15] Hartmut Prautzsch,et al. Is there a geometric variation diminishing property for B-spline or Bézier surfaces? , 1992, Comput. Aided Geom. Des..
[16] Hendrik Speleers,et al. Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .
[17] Larry Schumaker,et al. Spline Functions: Basic Theory: Preface to the 3rd Edition , 2007 .
[18] Juan Manuel Peña,et al. Total positivity and optimal bases , 1996 .
[19] D. F. Rogers,et al. An Introduction to NURBS: With Historical Perspective , 2011 .
[20] Juan Manuel Peña,et al. On the Characterization of Totally Positive Matrices , 1992 .
[21] Hendrik Speleers,et al. Isogeometric collocation methods with generalized B-splines , 2015, Comput. Math. Appl..
[22] Josef Hoschek,et al. Fundamentals of computer aided geometric design , 1996 .
[23] Paul Dierckx,et al. From PS-splines to NURPS , 2000 .
[24] Carla Manni,et al. Isogeometric analysis in advection-diffusion problems: Tension splines approximation , 2011, J. Comput. Appl. Math..
[25] Pairote Sattayatham,et al. GB-splines of arbitrary order 1 , 1999 .
[26] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[27] Marian Neamtu,et al. Delaunay configurations and multivariate splines: A generalization of a result of B. N. Delaunay , 2007 .
[28] Gerald Farin,et al. Curves and surfaces for computer aided geometric design , 1990 .
[29] C. D. Boor,et al. Box splines , 1993 .
[30] Les A. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communication.
[31] C. D. Boor,et al. On Calculating B-splines , 1972 .
[32] Hendrik Speleers,et al. A locking-free model for Reissner-Mindlin plates: Analysis and isogeometric implementation via NURBS and triangular NURPS , 2015 .
[33] C. Loewner. On totally positive matrices , 1955 .
[34] M. Marsden. An identity for spline functions with applications to variation-diminishing spline approximation☆ , 1970 .
[35] Les A. Piegl,et al. The NURBS book (2nd ed.) , 1997 .
[36] Hendrik Speleers,et al. Numerical solution of partial differential equations with Powell-Sabin splines , 2006 .
[37] P. Bézier. MATHEMATICAL AND PRACTICAL POSSIBILITIES OF UNISURF , 1974 .
[38] Hendrik Speleers,et al. A normalized basis for quintic Powell-Sabin splines , 2010, Comput. Aided Geom. Des..
[39] M. Fekete,et al. Über ein problem von laguerre , 1912 .
[40] Hendrik Speleers,et al. A normalized basis for reduced Clough-Tocher splines , 2010, Comput. Aided Geom. Des..
[41] Tina Bosner,et al. Non-uniform exponential tension splines , 2007, Numerical Algorithms.
[42] Larry L. Schumaker,et al. Spline functions - basic theory, Third Edition , 2007, Cambridge mathematical library.
[43] Larry L. Schumaker,et al. Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.
[44] Hendrik Speleers,et al. Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction problems , 2012 .
[45] Juan Manuel Peña,et al. A general class of Bernstein-like bases , 2007, Comput. Math. Appl..
[46] Guozhao Wang,et al. Unified and extended form of three types of splines , 2008 .
[47] Tom Lyche,et al. On a class of weak Tchebycheff systems , 2005, Numerische Mathematik.
[48] Juan Manuel Peña,et al. Totally positive bases for shape preserving curve design and optimality of B-splines , 1994, Comput. Aided Geom. Des..
[49] T. Andô. Totally positive matrices , 1987 .
[50] Paul Sablonnière,et al. Pierre Bézier: An engineer, a mathematician , 2001, Comput. Aided Geom. Des..
[51] Carla Manni,et al. Generalized B-splines as a tool in Isogeometric Analysis , 2011 .
[52] Tom Lyche,et al. Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics , 1980 .
[53] Marie-Laurence Mazure,et al. Chebyshev-Bernstein bases , 1999, Comput. Aided Geom. Des..
[54] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[55] W. Boehm,et al. Bezier and B-Spline Techniques , 2002 .
[56] Wolfgang Böhm,et al. A survey of curve and surface methods in CAGD , 1984, Comput. Aided Geom. Des..
[57] Carl de Boor,et al. The way things were in multivariate splines: A personal view , 2009 .
[58] Marie-Laurence Mazure,et al. Chebyshev splines beyond total positivity , 2001, Adv. Comput. Math..
[59] Hendrik Speleers,et al. From NURBS to NURPS geometries , 2013 .
[60] Gerald E. Farin,et al. Curves and surfaces for computer-aided geometric design - a practical guide, 4th Edition , 1997, Computer science and scientific computing.
[61] Rida T. Farouki,et al. The Bernstein polynomial basis: A centennial retrospective , 2012, Comput. Aided Geom. Des..
[62] Hendrik Speleers,et al. Local Hierarchical h-Refinements in IgA Based on Generalized B-Splines , 2012, MMCS.
[63] Carla Manni,et al. Quasi-interpolation in isogeometric analysis based on generalized B-splines , 2010, Comput. Aided Geom. Des..
[64] Malcolm A. Sabin,et al. Piecewise Quadratic Approximations on Triangles , 1977, TOMS.
[65] Tom Lyche,et al. A recurrence relation for chebyshevianB-splines , 1985 .
[66] Paul de Faget de Casteljau. De Casteljau's autobiography: My time at Citroën , 1999, Comput. Aided Geom. Des..
[67] I. J. Schoenberg,et al. A brief account of my life and work , 1988 .
[68] Huaiyu Zhang,et al. Unifying C-curves and H-curves by extending the calculation to complex numbers , 2005, Comput. Aided Geom. Des..
[69] Lyle Ramshaw,et al. Blossoms are polar forms , 1989, Comput. Aided Geom. Des..
[70] Wolfgang Böhm,et al. On de Casteljau's algorithm , 1999, Comput. Aided Geom. Des..
[71] Paul Dierckx,et al. On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..
[72] D. Levin,et al. Subdivision schemes in geometric modelling , 2002, Acta Numerica.