Standard and Non-standard CAGD Tools for Isogeometric Analysis: A Tutorial

We present a detailed summary of the main CAGD tools of interest in IgA: Bernstein polynomials and B-splines. Besides their well-known algebraic and geometric properties, we give a deeper insight into why these representations are so popular and efficient by proving that they are optimal bases for the corresponding function spaces. Moreover, we review some generalizations of the B-spline structure in function spaces which extend classical polynomial spaces. Extensions to the bivariate setting beyond the straightforward tensor-product case are discussed as well. In particular, we focus on the triangular setting.

[1]  Marian Neamtu,et al.  What is the natural generalization of univariate splines to higher dimensions , 2001 .

[2]  C. Micchelli,et al.  Blossoming begets B -spline bases built better by B -patches , 1992 .

[3]  P. Sattayatham,et al.  GB-splines of arbitrary order , 1999 .

[4]  Charles A. Micchelli,et al.  Total positivity and its applications , 1996 .

[5]  Tim N. T. Goodman,et al.  Blossoming beyond Extended Chebyshev Spaces , 2001, J. Approx. Theory.

[6]  Rida T. Farouki,et al.  On the optimal stability of the Bernstein basis , 1996, Math. Comput..

[7]  Marie-Laurence Mazure,et al.  How to build all Chebyshevian spline spaces good for geometric design? , 2011, Numerische Mathematik.

[8]  Tim N. T. Goodman,et al.  Total Positivity and the Shape of Curves , 1996 .

[9]  Hendrik Speleers,et al.  Multivariate normalized Powell-Sabin B-splines and quasi-interpolants , 2013, Comput. Aided Geom. Des..

[10]  Nira Dyn,et al.  Exponentials Reproducing Subdivision Schemes , 2003, Found. Comput. Math..

[11]  Hendrik Speleers,et al.  Weight control for modelling with NURPS surfaces , 2007, Comput. Aided Geom. Des..

[12]  Paul L. Butzer,et al.  Observations on the history of central B-splines , 1988, Archive for History of Exact Sciences.

[13]  Tom Lyche,et al.  Interpolation with Exponential B-Splines in Tension , 1993, Geometric Modelling.

[14]  Juan Manuel Peña,et al.  Shape preserving representations and optimality of the Bernstein basis , 1993, Adv. Comput. Math..

[15]  Hartmut Prautzsch,et al.  Is there a geometric variation diminishing property for B-spline or Bézier surfaces? , 1992, Comput. Aided Geom. Des..

[16]  Hendrik Speleers,et al.  Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .

[17]  Larry Schumaker,et al.  Spline Functions: Basic Theory: Preface to the 3rd Edition , 2007 .

[18]  Juan Manuel Peña,et al.  Total positivity and optimal bases , 1996 .

[19]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[20]  Juan Manuel Peña,et al.  On the Characterization of Totally Positive Matrices , 1992 .

[21]  Hendrik Speleers,et al.  Isogeometric collocation methods with generalized B-splines , 2015, Comput. Math. Appl..

[22]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[23]  Paul Dierckx,et al.  From PS-splines to NURPS , 2000 .

[24]  Carla Manni,et al.  Isogeometric analysis in advection-diffusion problems: Tension splines approximation , 2011, J. Comput. Appl. Math..

[25]  Pairote Sattayatham,et al.  GB-splines of arbitrary order 1 , 1999 .

[26]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[27]  Marian Neamtu,et al.  Delaunay configurations and multivariate splines: A generalization of a result of B. N. Delaunay , 2007 .

[28]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[29]  C. D. Boor,et al.  Box splines , 1993 .

[30]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[31]  C. D. Boor,et al.  On Calculating B-splines , 1972 .

[32]  Hendrik Speleers,et al.  A locking-free model for Reissner-Mindlin plates: Analysis and isogeometric implementation via NURBS and triangular NURPS , 2015 .

[33]  C. Loewner On totally positive matrices , 1955 .

[34]  M. Marsden An identity for spline functions with applications to variation-diminishing spline approximation☆ , 1970 .

[35]  Les A. Piegl,et al.  The NURBS book (2nd ed.) , 1997 .

[36]  Hendrik Speleers,et al.  Numerical solution of partial differential equations with Powell-Sabin splines , 2006 .

[37]  P. Bézier MATHEMATICAL AND PRACTICAL POSSIBILITIES OF UNISURF , 1974 .

[38]  Hendrik Speleers,et al.  A normalized basis for quintic Powell-Sabin splines , 2010, Comput. Aided Geom. Des..

[39]  M. Fekete,et al.  Über ein problem von laguerre , 1912 .

[40]  Hendrik Speleers,et al.  A normalized basis for reduced Clough-Tocher splines , 2010, Comput. Aided Geom. Des..

[41]  Tina Bosner,et al.  Non-uniform exponential tension splines , 2007, Numerical Algorithms.

[42]  Larry L. Schumaker,et al.  Spline functions - basic theory, Third Edition , 2007, Cambridge mathematical library.

[43]  Larry L. Schumaker,et al.  Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.

[44]  Hendrik Speleers,et al.  Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction problems , 2012 .

[45]  Juan Manuel Peña,et al.  A general class of Bernstein-like bases , 2007, Comput. Math. Appl..

[46]  Guozhao Wang,et al.  Unified and extended form of three types of splines , 2008 .

[47]  Tom Lyche,et al.  On a class of weak Tchebycheff systems , 2005, Numerische Mathematik.

[48]  Juan Manuel Peña,et al.  Totally positive bases for shape preserving curve design and optimality of B-splines , 1994, Comput. Aided Geom. Des..

[49]  T. Andô Totally positive matrices , 1987 .

[50]  Paul Sablonnière,et al.  Pierre Bézier: An engineer, a mathematician , 2001, Comput. Aided Geom. Des..

[51]  Carla Manni,et al.  Generalized B-splines as a tool in Isogeometric Analysis , 2011 .

[52]  Tom Lyche,et al.  Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics , 1980 .

[53]  Marie-Laurence Mazure,et al.  Chebyshev-Bernstein bases , 1999, Comput. Aided Geom. Des..

[54]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[55]  W. Boehm,et al.  Bezier and B-Spline Techniques , 2002 .

[56]  Wolfgang Böhm,et al.  A survey of curve and surface methods in CAGD , 1984, Comput. Aided Geom. Des..

[57]  Carl de Boor,et al.  The way things were in multivariate splines: A personal view , 2009 .

[58]  Marie-Laurence Mazure,et al.  Chebyshev splines beyond total positivity , 2001, Adv. Comput. Math..

[59]  Hendrik Speleers,et al.  From NURBS to NURPS geometries , 2013 .

[60]  Gerald E. Farin,et al.  Curves and surfaces for computer-aided geometric design - a practical guide, 4th Edition , 1997, Computer science and scientific computing.

[61]  Rida T. Farouki,et al.  The Bernstein polynomial basis: A centennial retrospective , 2012, Comput. Aided Geom. Des..

[62]  Hendrik Speleers,et al.  Local Hierarchical h-Refinements in IgA Based on Generalized B-Splines , 2012, MMCS.

[63]  Carla Manni,et al.  Quasi-interpolation in isogeometric analysis based on generalized B-splines , 2010, Comput. Aided Geom. Des..

[64]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.

[65]  Tom Lyche,et al.  A recurrence relation for chebyshevianB-splines , 1985 .

[66]  Paul de Faget de Casteljau De Casteljau's autobiography: My time at Citroën , 1999, Comput. Aided Geom. Des..

[67]  I. J. Schoenberg,et al.  A brief account of my life and work , 1988 .

[68]  Huaiyu Zhang,et al.  Unifying C-curves and H-curves by extending the calculation to complex numbers , 2005, Comput. Aided Geom. Des..

[69]  Lyle Ramshaw,et al.  Blossoms are polar forms , 1989, Comput. Aided Geom. Des..

[70]  Wolfgang Böhm,et al.  On de Casteljau's algorithm , 1999, Comput. Aided Geom. Des..

[71]  Paul Dierckx,et al.  On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..

[72]  D. Levin,et al.  Subdivision schemes in geometric modelling , 2002, Acta Numerica.