Schrödinger difference equation with deterministic ergodic potentials
暂无分享,去创建一个
[1] Anton Bovier,et al. GAP LABELLING THEOREMS FOR ONE DIMENSIONAL DISCRETE SCHRÖDINGER OPERATORS , 1992 .
[2] J. Fröhlich,et al. Localization for a class of one dimensional quasi-periodic Schrödinger operators , 1990 .
[3] S. Kotani. Ljapunov Indices Determine Absolutely Continuous Spectra of Stationary Random One-dimensional Schrödinger Operators , 1984 .
[4] Jean Bellissard,et al. Spectral properties of one dimensional quasi-crystals , 1989 .
[5] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[6] A. Maritan,et al. The spectrum of a one-dimensional hierarchical model , 1988 .
[7] P. Deift,et al. The Absolutely Continuous Spectrum in One Dimension , 1983 .
[8] B. Simon,et al. Cantor spectrum for the almost Mathieu equation , 1982 .
[9] Rachel J. Steiner,et al. The spectral theory of periodic differential equations , 1973 .
[10] Chao Tang,et al. Localization Problem in One Dimension: Mapping and Escape , 1983 .
[11] Ali,et al. Trace maps associated with general two-letter substitution rules. , 1990, Physical review. A, Atomic, molecular, and optical physics.
[12] András Sütő,et al. The spectrum of a quasiperiodic Schrödinger operator , 1987 .
[13] H. Furstenberg,et al. Products of Random Matrices , 1960 .
[14] Kohmoto,et al. New localization in a quasiperiodic system. , 1989, Physical review letters.
[15] D. Thouless. Bandwidths for a quasiperiodic tight-binding model , 1983 .
[16] D. Berend,et al. Trace maps for arbitrary substitution sequences , 1993 .
[17] Absence of Cantor spectrum for a class of Schr , 1993, math/9307232.
[18] Y. Sinai. Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential , 1987 .
[19] Hans L. Cycon,et al. Schrodinger Operators: With Application to Quantum Mechanics and Global Geometry , 1987 .
[20] Reinhard Lang,et al. Spectral Theory of Random Schrödinger Operators , 1991 .
[21] G. Hardy,et al. An Introduction To The Theory Of Numbers Fourth Edition , 1968 .
[22] D. Grempel,et al. Localization in a d-dimensional incommensurate structure , 1984 .
[23] D. Grempel,et al. Chaos, Quantum Recurrences, and Anderson Localization , 1982 .
[24] B. Simon. Almost periodic Schrödinger operators: A Review , 1982 .
[25] P. Bougerol,et al. Products of Random Matrices with Applications to Schrödinger Operators , 1985 .
[26] K. Iguchi. Equivalence between the Nielsen and the scaling transformations in one‐dimensional quasiperiodic systems , 1993 .
[27] N. Kalouptsidis,et al. Spectral analysis , 1993 .
[28] Morikazu Toda,et al. Theory Of Nonlinear Lattices , 1981 .
[29] Anton Bovier,et al. Spectral properties of a tight binding Hamiltonian with period doubling potential , 1991 .
[30] Russell Johnson. A review of recent work on almost periodic differential and difference operators , 1983 .
[31] David Griffeath,et al. Multicomponent Random Systems , 1980 .
[32] F. Delyon,et al. Purely absolutely continuous spectrum for almost Mathieu operators , 1989 .
[33] Seunghwan Kim,et al. Renormalization of Quasiperiodic Mappings , 1985 .
[34] S. Jitomirskaya. Anderson localization for the almost Mathieu equation: II. Point spectrum for λ>2 , 1995 .
[35] J. Bellissard,et al. Continuity properties of the electronic spectrum of 1D quasicrystals , 1991 .
[36] L. Raymond,et al. Resistance of one-dimensional quasicrystals , 1992 .
[37] Paul Erdös,et al. Theories of electrons in one-dimensional disordered systems , 1982 .
[38] Barry Simon,et al. Log hölder continuity of the integrated density of states for stochastic Jacobi matrices , 1983 .
[39] Y. Last. A relation between a.c. spectrum of ergodic Jacobi matrices and the spectra of periodic approximants , 1993 .
[40] M. Casdagli. Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation , 1986 .
[41] P. Michel. Stricte ergodicite d’ensembles minimaux de substitution , 1976 .
[42] Michel Waldschmidt,et al. Number Theory and Physics , 1990 .
[43] Repeller structure in a hierarchical model. II. Metric properties , 1991 .
[44] B. Simon,et al. On the measure of the spectrum for the almost Mathieu operator , 1990 .
[45] L. Maiani,et al. The muon anomalous magnetic moment in broken supersymmetric theories , 1982 .
[46] F. Delyon. Absence of localisation in the almost Mathieu equation , 1987 .
[47] J. Moser,et al. The rotation number for almost periodic potentials , 1983 .
[48] D. Grempel,et al. Localization in an Incommensurate Potential: An Exactly Solvable Model , 1982 .
[49] Michel Waldschmidt,et al. From Number Theory to Physics , 1992 .
[50] T. C. Dorlas,et al. Statistical Mechanics and Field Theory: Mathematical Aspects , 1986 .
[51] Barry Simon,et al. Subharmonicity of the Lyaponov index , 1983 .
[52] Françoise Axel,et al. Spectrum and extended states in a harmonic chain with controlled disorder: Effects of the Thue-Morse symmetry , 1989 .
[53] Almost Mathieu Operators and Rotation C*-Algebras , 1988 .
[54] András Sütő,et al. Singular continuous spectrum on a cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian , 1989 .
[55] J. Bellissard. K-theory of C*—Algebras in solid state physics , 1986 .
[56] M. Kohmoto,et al. ELECTRONIC SPECTRAL AND WAVEFUNCTION PROPERTIES OF ONE-DIMENSIONAL QUASIPERIODIC SYSTEMS: A SCALING APPROACH , 1992 .
[57] M. Severin,et al. THE THUE-MORSE APERIODIC CRYSTAL, A LINK BETWEEN THE FIBONACCI QUASICRYSTAL AND THE PERIODIC CRYSTAL , 1987 .
[58] F. Martinelli,et al. Introduction to the mathematical theory of Anderson localization , 1986 .
[59] A. Gordon. Pure point spectrum under 1-parameter perturbations and instability of Anderson localization , 1994 .
[60] B. Simon,et al. Operators with singular continuous spectrum: III. Almost periodic Schrödinger operators , 1994 .
[61] E. Scoppola,et al. The density of states for almost periodic Schrödinger operators and the frequency module: A counter-example , 1982 .
[62] D. Pearson. Singular continuous measures in scattering theory , 1978 .
[63] J. Moser. An example of a Schroedinger equation with almost periodic potential and nowhere dense spectrum , 1981 .
[64] A. Hof. Some remarks on discrete aperiodic Schrödinger operators , 1993 .
[65] R. Bolstein,et al. Expansions in eigenfunctions of selfadjoint operators , 1968 .
[66] B. Simon. Kotani theory for one dimensional stochastic Jacobi matrices , 1983 .
[67] D. Herbert,et al. Localized states in disordered systems , 1971 .
[68] J. Luck,et al. Cantor spectra and scaling of gap widths in deterministic aperiodic systems. , 1989, Physical review. B, Condensed matter.
[69] M. Queffélec. Substitution dynamical systems, spectral analysis , 1987 .
[70] Y. Sinai,et al. THE EXPONENTIAL LOCALIZATION AND STRUCTURE OF THE SPECTRUM FOR 1D QUASI-PERIODIC DISCRETE SCHRÖDINGER OPERATORS , 1991 .
[71] H. Kunz,et al. Cantor spectrum and singular continuity for a hierarchical Hamiltonian , 1989 .
[72] François Delyon,et al. Recurrence of the eigenstates of a Schrödinger operator with automatic potential , 1991 .
[73] W. H. Gottschalk. Substitution minimal sets , 1963 .
[74] Y. Sinai,et al. Anderson localization for the 1-D discrete Schrödinger operator with two-frequency potential , 1989 .
[75] B. Simon. Almost periodic Schrödinger operators IV. The maryland model , 1985 .
[76] A. V. Elst. GAP-LABELLING THEOREMS FOR SCHRÖDINGER OPERATORS ON THE SQUARE AND CUBIC LATTICE , 1994 .
[77] L. Pastur. Spectral properties of disordered systems in the one-body approximation , 1980 .
[78] B. Simon,et al. Operators with singular continuous spectrum: II. Rank one operators , 1994 .
[79] Nori,et al. Trace maps of general substitutional sequences. , 1990, Physical review. B, Condensed matter.
[80] B. Simon,et al. On the measure of the spectrum for the almost Mathieu operator , 1991 .
[81] Barry Simon,et al. Singular continuous spectrum for palindromic Schrödinger operators , 1995 .
[82] Kohmoto,et al. Localization of optics: Quasiperiodic media. , 1987, Physical review letters.
[83] G. Hardy,et al. An Introduction to the Theory of Numbers , 1938 .
[84] Hervé Kunz,et al. Sur le spectre des opérateurs aux différences finies aléatoires , 1980 .
[85] Y. Last. Zero measure spectrum for the almost Mathieu operator , 1994 .
[86] D. Gilbert. On subordinacy and analysis of the spectrum of Schrödinger operators with two singular endpoints , 1989, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[87] Localization of eigenstates and transport phenomena in the one-dimensional disordered system , 1972 .
[88] R. Lima,et al. A metal-insulator transition for the almost Mathieu model , 1983 .
[89] B. Simon,et al. Almost periodic Schrödinger operators II. The integrated density of states , 1983 .
[90] F. Delyon,et al. The rotation number for finite difference operators and its properties , 1983 .
[91] D. Pearson,et al. Quantum scattering and spectral theory , 1988 .
[92] V. I. Oseledec. A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .
[93] Y. Last. On the measure of gaps and spectra for discrete 1D Schrödinger operators , 1992 .
[94] René Carmona,et al. Anderson localization for Bernoulli and other singular potentials , 1987 .
[95] Barry Simon,et al. Analysis of Operators , 1978 .
[96] J. Bellissard. Spectral Properties of Schrödinger’s Operator with a Thue-Morse Potential , 1990 .
[97] D. Thouless. Scaling for the discrete Mathieu equation , 1990 .
[98] A. Bovier,et al. Spectral properties of one-dimensional Schrödinger operators with potentials generated by substitutions , 1994 .
[99] D. Pearson,et al. On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators , 1987 .
[100] P. Deift,et al. Almost periodic Schrödinger operators , 1983 .
[101] Y. Oono,et al. Cantor spectrum for an almost periodic Schrödinger equation and a dynamical map , 1984 .
[102] Kohmoto,et al. Scaling analysis of quasiperiodic systems: Generalized Harper model. , 1989, Physical review. B, Condensed matter.
[103] Anton Bovier,et al. Spectral properties of one-dimensional Schrödinger operators with potentials generated by substitutions , 1993 .
[104] D. Pearson,et al. Subordinacy and spectral theory for infinite matrices , 1992 .
[105] JACOBI MATRICES WITH RANDOM POTENTIALS TAKING FINITELY MANY VALUES , 1989 .
[106] J. Kollár,et al. The Kronig-Penney model on a fibonacci lattice , 1986 .
[107] Tosio Kato. Perturbation theory for linear operators , 1966 .
[108] M. R. Herman. Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2 , 1983 .
[109] T. Spencer,et al. Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials , 1991 .
[110] A. Besicovitch. Almost Periodic Functions , 1954 .
[111] B. Iochum,et al. Power law growth for the resistance in the Fibonacci model , 1991 .
[112] David A. Rand,et al. One-dimensional schrodinger equation with an almost periodic potential , 1983 .
[113] F. Axel,et al. VIBRATIONAL MODES IN A ONE DIMENSIONAL "QUASI-ALLOY" : THE MORSE CASE , 1986 .
[114] S. Jitomirskaya. Anderson localization for the almost Mathieu equation: A nonperturbative proof , 1994 .
[115] V. Mandelshtam,et al. 1D-quasiperiodic operators. Latent symmetries , 1991 .
[116] F. M. Dekking,et al. The spectrum of dynamical systems arising from substitutions of constant length , 1978 .
[117] Kohmoto,et al. Resistance of a one-dimensional quasicrystal: Power-law growth. , 1987, Physical review. B, Condensed matter.
[118] D. Ruelle. Ergodic theory of differentiable dynamical systems , 1979 .
[119] D. Thouless. A relation between the density of states and range of localization for one dimensional random systems , 1972 .
[120] F. Martinelli,et al. Multiple tunnelings in d-dimensions : a quantum particle in a hierarchical potential , 1985 .
[121] Würtz,et al. Schrödinger problem for hierarchical heterostructures. , 1987, Physical review. B, Condensed matter.
[122] Alexander Figotin,et al. Spectra of Random and Almost-Periodic Operators , 1991 .
[123] M. Shubin. Discrete Magnetic Laplacian , 1994 .
[124] Dimitri Petritis,et al. Absence of localization in a class of Schrödinger operators with quasiperiodic potential , 1986 .
[125] Man-Duen Choi,et al. Gauss polynomials and the rotation algebra , 1990 .
[126] Hlawka. Theory of the integral , 1939 .