Schrödinger difference equation with deterministic ergodic potentials

We review the recent developments in the theory of the one-dimensional tight-binding Schrodinger equation for a class of deterministic ergodic potentials. In the typical examples the potentials are generated by substitutional sequences, like the Fibonacci or the Thue-Morse sequence. We concentrate on rigorous results which will be explained rather than proved. The necessary mathematical background is provided in the text.

[1]  Anton Bovier,et al.  GAP LABELLING THEOREMS FOR ONE DIMENSIONAL DISCRETE SCHRÖDINGER OPERATORS , 1992 .

[2]  J. Fröhlich,et al.  Localization for a class of one dimensional quasi-periodic Schrödinger operators , 1990 .

[3]  S. Kotani Ljapunov Indices Determine Absolutely Continuous Spectra of Stationary Random One-dimensional Schrödinger Operators , 1984 .

[4]  Jean Bellissard,et al.  Spectral properties of one dimensional quasi-crystals , 1989 .

[5]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[6]  A. Maritan,et al.  The spectrum of a one-dimensional hierarchical model , 1988 .

[7]  P. Deift,et al.  The Absolutely Continuous Spectrum in One Dimension , 1983 .

[8]  B. Simon,et al.  Cantor spectrum for the almost Mathieu equation , 1982 .

[9]  Rachel J. Steiner,et al.  The spectral theory of periodic differential equations , 1973 .

[10]  Chao Tang,et al.  Localization Problem in One Dimension: Mapping and Escape , 1983 .

[11]  Ali,et al.  Trace maps associated with general two-letter substitution rules. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[12]  András Sütő,et al.  The spectrum of a quasiperiodic Schrödinger operator , 1987 .

[13]  H. Furstenberg,et al.  Products of Random Matrices , 1960 .

[14]  Kohmoto,et al.  New localization in a quasiperiodic system. , 1989, Physical review letters.

[15]  D. Thouless Bandwidths for a quasiperiodic tight-binding model , 1983 .

[16]  D. Berend,et al.  Trace maps for arbitrary substitution sequences , 1993 .

[17]  Absence of Cantor spectrum for a class of Schr , 1993, math/9307232.

[18]  Y. Sinai Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential , 1987 .

[19]  Hans L. Cycon,et al.  Schrodinger Operators: With Application to Quantum Mechanics and Global Geometry , 1987 .

[20]  Reinhard Lang,et al.  Spectral Theory of Random Schrödinger Operators , 1991 .

[21]  G. Hardy,et al.  An Introduction To The Theory Of Numbers Fourth Edition , 1968 .

[22]  D. Grempel,et al.  Localization in a d-dimensional incommensurate structure , 1984 .

[23]  D. Grempel,et al.  Chaos, Quantum Recurrences, and Anderson Localization , 1982 .

[24]  B. Simon Almost periodic Schrödinger operators: A Review , 1982 .

[25]  P. Bougerol,et al.  Products of Random Matrices with Applications to Schrödinger Operators , 1985 .

[26]  K. Iguchi Equivalence between the Nielsen and the scaling transformations in one‐dimensional quasiperiodic systems , 1993 .

[27]  N. Kalouptsidis,et al.  Spectral analysis , 1993 .

[28]  Morikazu Toda,et al.  Theory Of Nonlinear Lattices , 1981 .

[29]  Anton Bovier,et al.  Spectral properties of a tight binding Hamiltonian with period doubling potential , 1991 .

[30]  Russell Johnson A review of recent work on almost periodic differential and difference operators , 1983 .

[31]  David Griffeath,et al.  Multicomponent Random Systems , 1980 .

[32]  F. Delyon,et al.  Purely absolutely continuous spectrum for almost Mathieu operators , 1989 .

[33]  Seunghwan Kim,et al.  Renormalization of Quasiperiodic Mappings , 1985 .

[34]  S. Jitomirskaya Anderson localization for the almost Mathieu equation: II. Point spectrum for λ>2 , 1995 .

[35]  J. Bellissard,et al.  Continuity properties of the electronic spectrum of 1D quasicrystals , 1991 .

[36]  L. Raymond,et al.  Resistance of one-dimensional quasicrystals , 1992 .

[37]  Paul Erdös,et al.  Theories of electrons in one-dimensional disordered systems , 1982 .

[38]  Barry Simon,et al.  Log hölder continuity of the integrated density of states for stochastic Jacobi matrices , 1983 .

[39]  Y. Last A relation between a.c. spectrum of ergodic Jacobi matrices and the spectra of periodic approximants , 1993 .

[40]  M. Casdagli Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation , 1986 .

[41]  P. Michel Stricte ergodicite d’ensembles minimaux de substitution , 1976 .

[42]  Michel Waldschmidt,et al.  Number Theory and Physics , 1990 .

[43]  Repeller structure in a hierarchical model. II. Metric properties , 1991 .

[44]  B. Simon,et al.  On the measure of the spectrum for the almost Mathieu operator , 1990 .

[45]  L. Maiani,et al.  The muon anomalous magnetic moment in broken supersymmetric theories , 1982 .

[46]  F. Delyon Absence of localisation in the almost Mathieu equation , 1987 .

[47]  J. Moser,et al.  The rotation number for almost periodic potentials , 1983 .

[48]  D. Grempel,et al.  Localization in an Incommensurate Potential: An Exactly Solvable Model , 1982 .

[49]  Michel Waldschmidt,et al.  From Number Theory to Physics , 1992 .

[50]  T. C. Dorlas,et al.  Statistical Mechanics and Field Theory: Mathematical Aspects , 1986 .

[51]  Barry Simon,et al.  Subharmonicity of the Lyaponov index , 1983 .

[52]  Françoise Axel,et al.  Spectrum and extended states in a harmonic chain with controlled disorder: Effects of the Thue-Morse symmetry , 1989 .

[53]  Almost Mathieu Operators and Rotation C*-Algebras , 1988 .

[54]  András Sütő,et al.  Singular continuous spectrum on a cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian , 1989 .

[55]  J. Bellissard K-theory of C*—Algebras in solid state physics , 1986 .

[56]  M. Kohmoto,et al.  ELECTRONIC SPECTRAL AND WAVEFUNCTION PROPERTIES OF ONE-DIMENSIONAL QUASIPERIODIC SYSTEMS: A SCALING APPROACH , 1992 .

[57]  M. Severin,et al.  THE THUE-MORSE APERIODIC CRYSTAL, A LINK BETWEEN THE FIBONACCI QUASICRYSTAL AND THE PERIODIC CRYSTAL , 1987 .

[58]  F. Martinelli,et al.  Introduction to the mathematical theory of Anderson localization , 1986 .

[59]  A. Gordon Pure point spectrum under 1-parameter perturbations and instability of Anderson localization , 1994 .

[60]  B. Simon,et al.  Operators with singular continuous spectrum: III. Almost periodic Schrödinger operators , 1994 .

[61]  E. Scoppola,et al.  The density of states for almost periodic Schrödinger operators and the frequency module: A counter-example , 1982 .

[62]  D. Pearson Singular continuous measures in scattering theory , 1978 .

[63]  J. Moser An example of a Schroedinger equation with almost periodic potential and nowhere dense spectrum , 1981 .

[64]  A. Hof Some remarks on discrete aperiodic Schrödinger operators , 1993 .

[65]  R. Bolstein,et al.  Expansions in eigenfunctions of selfadjoint operators , 1968 .

[66]  B. Simon Kotani theory for one dimensional stochastic Jacobi matrices , 1983 .

[67]  D. Herbert,et al.  Localized states in disordered systems , 1971 .

[68]  J. Luck,et al.  Cantor spectra and scaling of gap widths in deterministic aperiodic systems. , 1989, Physical review. B, Condensed matter.

[69]  M. Queffélec Substitution dynamical systems, spectral analysis , 1987 .

[70]  Y. Sinai,et al.  THE EXPONENTIAL LOCALIZATION AND STRUCTURE OF THE SPECTRUM FOR 1D QUASI-PERIODIC DISCRETE SCHRÖDINGER OPERATORS , 1991 .

[71]  H. Kunz,et al.  Cantor spectrum and singular continuity for a hierarchical Hamiltonian , 1989 .

[72]  François Delyon,et al.  Recurrence of the eigenstates of a Schrödinger operator with automatic potential , 1991 .

[73]  W. H. Gottschalk Substitution minimal sets , 1963 .

[74]  Y. Sinai,et al.  Anderson localization for the 1-D discrete Schrödinger operator with two-frequency potential , 1989 .

[75]  B. Simon Almost periodic Schrödinger operators IV. The maryland model , 1985 .

[76]  A. V. Elst GAP-LABELLING THEOREMS FOR SCHRÖDINGER OPERATORS ON THE SQUARE AND CUBIC LATTICE , 1994 .

[77]  L. Pastur Spectral properties of disordered systems in the one-body approximation , 1980 .

[78]  B. Simon,et al.  Operators with singular continuous spectrum: II. Rank one operators , 1994 .

[79]  Nori,et al.  Trace maps of general substitutional sequences. , 1990, Physical review. B, Condensed matter.

[80]  B. Simon,et al.  On the measure of the spectrum for the almost Mathieu operator , 1991 .

[81]  Barry Simon,et al.  Singular continuous spectrum for palindromic Schrödinger operators , 1995 .

[82]  Kohmoto,et al.  Localization of optics: Quasiperiodic media. , 1987, Physical review letters.

[83]  G. Hardy,et al.  An Introduction to the Theory of Numbers , 1938 .

[84]  Hervé Kunz,et al.  Sur le spectre des opérateurs aux différences finies aléatoires , 1980 .

[85]  Y. Last Zero measure spectrum for the almost Mathieu operator , 1994 .

[86]  D. Gilbert On subordinacy and analysis of the spectrum of Schrödinger operators with two singular endpoints , 1989, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[87]  Localization of eigenstates and transport phenomena in the one-dimensional disordered system , 1972 .

[88]  R. Lima,et al.  A metal-insulator transition for the almost Mathieu model , 1983 .

[89]  B. Simon,et al.  Almost periodic Schrödinger operators II. The integrated density of states , 1983 .

[90]  F. Delyon,et al.  The rotation number for finite difference operators and its properties , 1983 .

[91]  D. Pearson,et al.  Quantum scattering and spectral theory , 1988 .

[92]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[93]  Y. Last On the measure of gaps and spectra for discrete 1D Schrödinger operators , 1992 .

[94]  René Carmona,et al.  Anderson localization for Bernoulli and other singular potentials , 1987 .

[95]  Barry Simon,et al.  Analysis of Operators , 1978 .

[96]  J. Bellissard Spectral Properties of Schrödinger’s Operator with a Thue-Morse Potential , 1990 .

[97]  D. Thouless Scaling for the discrete Mathieu equation , 1990 .

[98]  A. Bovier,et al.  Spectral properties of one-dimensional Schrödinger operators with potentials generated by substitutions , 1994 .

[99]  D. Pearson,et al.  On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators , 1987 .

[100]  P. Deift,et al.  Almost periodic Schrödinger operators , 1983 .

[101]  Y. Oono,et al.  Cantor spectrum for an almost periodic Schrödinger equation and a dynamical map , 1984 .

[102]  Kohmoto,et al.  Scaling analysis of quasiperiodic systems: Generalized Harper model. , 1989, Physical review. B, Condensed matter.

[103]  Anton Bovier,et al.  Spectral properties of one-dimensional Schrödinger operators with potentials generated by substitutions , 1993 .

[104]  D. Pearson,et al.  Subordinacy and spectral theory for infinite matrices , 1992 .

[105]  JACOBI MATRICES WITH RANDOM POTENTIALS TAKING FINITELY MANY VALUES , 1989 .

[106]  J. Kollár,et al.  The Kronig-Penney model on a fibonacci lattice , 1986 .

[107]  Tosio Kato Perturbation theory for linear operators , 1966 .

[108]  M. R. Herman Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2 , 1983 .

[109]  T. Spencer,et al.  Positive Lyapunov exponents for Schrödinger operators with quasi-periodic potentials , 1991 .

[110]  A. Besicovitch Almost Periodic Functions , 1954 .

[111]  B. Iochum,et al.  Power law growth for the resistance in the Fibonacci model , 1991 .

[112]  David A. Rand,et al.  One-dimensional schrodinger equation with an almost periodic potential , 1983 .

[113]  F. Axel,et al.  VIBRATIONAL MODES IN A ONE DIMENSIONAL "QUASI-ALLOY" : THE MORSE CASE , 1986 .

[114]  S. Jitomirskaya Anderson localization for the almost Mathieu equation: A nonperturbative proof , 1994 .

[115]  V. Mandelshtam,et al.  1D-quasiperiodic operators. Latent symmetries , 1991 .

[116]  F. M. Dekking,et al.  The spectrum of dynamical systems arising from substitutions of constant length , 1978 .

[117]  Kohmoto,et al.  Resistance of a one-dimensional quasicrystal: Power-law growth. , 1987, Physical review. B, Condensed matter.

[118]  D. Ruelle Ergodic theory of differentiable dynamical systems , 1979 .

[119]  D. Thouless A relation between the density of states and range of localization for one dimensional random systems , 1972 .

[120]  F. Martinelli,et al.  Multiple tunnelings in d-dimensions : a quantum particle in a hierarchical potential , 1985 .

[121]  Würtz,et al.  Schrödinger problem for hierarchical heterostructures. , 1987, Physical review. B, Condensed matter.

[122]  Alexander Figotin,et al.  Spectra of Random and Almost-Periodic Operators , 1991 .

[123]  M. Shubin Discrete Magnetic Laplacian , 1994 .

[124]  Dimitri Petritis,et al.  Absence of localization in a class of Schrödinger operators with quasiperiodic potential , 1986 .

[125]  Man-Duen Choi,et al.  Gauss polynomials and the rotation algebra , 1990 .

[126]  Hlawka Theory of the integral , 1939 .