A novel deconvolution method for modeling UDP-N-acetyl-D-glucosamine biosynthetic pathways based on 13C mass isotopologue profiles under non-steady-state conditions

[1]  Andrew N Lane,et al.  A novel deconvolution method for modeling UDP-N-acetyl-D-glucosamine biosynthetic pathways based on 13C mass isotopologue profiles under non-steady-state conditions , 2011, BMC Biology.

[2]  A. Lane,et al.  Stable isotope-resolved metabolomics (SIRM) in cancer research with clinical application to nonsmall cell lung cancer. , 2011, Omics : a journal of integrative biology.

[3]  Andrew N Lane,et al.  NMR-based stable isotope resolved metabolomics in systems biochemistry , 2011, Journal of biomolecular NMR.

[4]  Feng Han,et al.  GlcNAcylation plays an essential role in breast cancer metastasis. , 2010, Cancer research.

[5]  Yi E. Sun,et al.  Quantitation of O-Glycosylation Stoichiometry and Dynamics using Resolvable Mass Tags , 2010, Nature chemical biology.

[6]  Hunter N. B. Moseley,et al.  Correcting for the effects of natural abundance in stable isotope resolved metabolomics experiments involving ultra-high resolution mass spectrometry , 2010, BMC Bioinformatics.

[7]  J. Hanover,et al.  The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine. , 2010, Biochimica et biophysica acta.

[8]  G. Hart,et al.  The intersections between O-GlcNAcylation and phosphorylation: implications for multiple signaling pathways , 2010, Journal of Cell Science.

[9]  H. Moseley,et al.  Isotopomer analysis of lipid biosynthesis by high resolution mass spectrometry and NMR. , 2009, Analytica chimica acta.

[10]  N. Isern,et al.  c-Myc activates multiple metabolic networks to generate substrates for cell-cycle entry , 2009, Oncogene.

[11]  Jürg Müller,et al.  Essential Role of the Glycosyltransferase Sxc/Ogt in Polycomb Repression , 2009, Science.

[12]  T. Fan,et al.  Altered regulation of metabolic pathways in human lung cancer discerned by 13C stable isotope-resolved metabolomics (SIRM) , 2009, Molecular Cancer.

[13]  Richard M Higashi,et al.  Prospects for clinical cancer metabolomics using stable isotope tracers. , 2009, Experimental and molecular pathology.

[14]  Jan Schellenberger,et al.  Use of Randomized Sampling for Analysis of Metabolic Networks* , 2009, Journal of Biological Chemistry.

[15]  D. McClain,et al.  Up-regulation of O-GlcNAc Transferase with Glucose Deprivation in HepG2 Cells Is Mediated by Decreased Hexosamine Pathway Flux* , 2009, Journal of Biological Chemistry.

[16]  T. Fan,et al.  Rhabdomyosarcoma cells show an energy producing anabolic metabolic phenotype compared with primary myocytes , 2008, Molecular Cancer.

[17]  A. W. Schüttelkopf,et al.  Structural insights into mechanism and specificity of O-GlcNAc transferase , 2008, The EMBO journal.

[18]  J. Dennis,et al.  Genome‐scale identification of UDP‐GlcNAc‐dependent pathways , 2008, Proteomics.

[19]  Andrew N. Lane,et al.  Structure-based profiling of metabolites and isotopomers by NMR , 2008 .

[20]  Richard M Higashi,et al.  Stable isotope‐assisted metabolomics in cancer research , 2008, IUBMB life.

[21]  R. Deberardinis,et al.  Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis , 2007, Proceedings of the National Academy of Sciences.

[22]  T. Jenuwein,et al.  Role of the polycomb repressive complex 2 in acute promyelocytic leukemia. , 2007, Cancer cell.

[23]  G. Stephanopoulos,et al.  Metabolic flux analysis in a nonstationary system: fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol. , 2007, Metabolic engineering.

[24]  Andrew N. Lane,et al.  Quantification and identification of isotopomer distributions of metabolites in crude cell extracts using 1H TOCSY , 2007, Metabolomics.

[25]  U. Sauer,et al.  Article number: 62 REVIEW Metabolic networks in motion: 13 C-based flux analysis , 2022 .

[26]  Vitaly A. Selivanov,et al.  Software for dynamic analysis of tracer-based metabolomic data: estimation of metabolic fluxes and their statistical analysis , 2006, Bioinform..

[27]  Andrew N. Lane,et al.  Metabolomics-edited transcriptomics analysis of Se anticancer action in human lung cancer cells , 2006, Metabolomics.

[28]  Suzanne Wehrli,et al.  Artificial tumor model suitable for monitoring 31P and 13C NMR spectroscopic changes during chemotherapy‐induced apoptosis in human glioma cells , 2005, Magnetic resonance in medicine.

[29]  Royston Goodacre,et al.  Metabolomics – the way forward , 2005, Metabolomics.

[30]  Vitaly A. Selivanov,et al.  An optimized algorithm for flux estimation from isotopomer distribution in glucose metabolites , 2004, Bioinform..

[31]  Andrew N Lane,et al.  The promise of metabolomics in cancer molecular therapeutics. , 2004, Current opinion in molecular therapeutics.

[32]  G. Hart,et al.  O-GlcNAc a sensor of cellular state: the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress. , 2004, Biochimica et biophysica acta.

[33]  Marta Cascante,et al.  Dynamic profiling of the glucose metabolic network in fasted rat hepatocytes using [1,2-13C2]glucose. , 2004, The Biochemical journal.

[34]  Kenneth J. Kauffman,et al.  Advances in flux balance analysis. , 2003, Current opinion in biotechnology.

[35]  Carolyn R. Bertozzi,et al.  Essentials of Glycobiology , 1999 .

[36]  D. Fell Understanding the Control of Metabolism , 1996 .

[37]  H. Blanch,et al.  Examination of primary metabolic pathways in a murine hybridoma with carbon‐13 nuclear magnetic resonance spectroscopy , 1994, Biotechnology and bioengineering.

[38]  J. Kurhanewicz,et al.  Effect of glucose and confluency on phosphorus metabolites of perfused human prostatic adenocarcinoma cells as determined by31P MRS , 1993 .

[39]  B O Palsson,et al.  Optimal selection of metabolic fluxes for in vivo measurement. I. Development of mathematical methods. , 1992, Journal of theoretical biology.

[40]  D. Fell,et al.  Fat synthesis in adipose tissue. An examination of stoichiometric constraints. , 1986, The Biochemical journal.

[41]  A. Lane,et al.  Combined use of 1H-NMR and GC-MS for metabolite monitoring and in vivo 1H-NMR assignments. , 1986, Biochimica et biophysica acta.

[42]  W. Mckeehan,et al.  Glycolysis, glutaminolysis and cell proliferation. , 1982, Cell biology international reports.

[43]  H. Akaike A new look at the statistical model identification , 1974 .

[44]  Andrew N Lane,et al.  Isotopomer-based metabolomic analysis by NMR and mass spectrometry. , 2008, Methods in cell biology.

[45]  BMC Biology , 2004 .

[46]  S. Lloyd,et al.  A critical perspective of the use of (13)C-isotopomer analysis by GCMS and NMR as applied to cardiac metabolism. , 2004, Metabolic engineering.

[47]  Robert K. Murray,et al.  Harper's Illustrated Biochemistry , 2003 .