THE ATACAMA COSMOLOGY TELESCOPE: COSMOLOGICAL PARAMETERS FROM THE 2008 POWER SPECTRUM

We present cosmological parameters derived from the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz and 218 GHz over 296 deg2 with the Atacama Cosmology Telescope (ACT) during its 2008 season. ACT measures fluctuations at scales 500 < ℓ < 10, 000. We fit a model for the lensed CMB, Sunyaev–Zel'dovich (SZ), and foreground contribution to the 148 GHz and 218 GHz power spectra, including thermal and kinetic SZ, Poisson power from radio and infrared point sources, and clustered power from infrared point sources. At ℓ = 3000, about half the power at 148 GHz comes from primary CMB after masking bright radio sources. The power from thermal and kinetic SZ is estimated to be , where . The IR Poisson power at 148 GHz is (Cℓ = 5.5 ± 0.5 nK2), and a clustered IR component is required with , assuming an analytic model for its power spectrum shape. At 218 GHz only about 15% of the power, approximately 27 μK2, is CMB anisotropy at ℓ = 3000. The remaining 85% is attributed to IR sources (approximately 50% Poisson and 35% clustered), with spectral index α = 3.69 ± 0.14 for flux scaling as S(ν)∝να. We estimate primary cosmological parameters from the less contaminated 148 GHz spectrum, marginalizing over SZ and source power. The ΛCDM cosmological model is a good fit to the data (χ2/dof = 29/46), and ΛCDM parameters estimated from ACT+Wilkinson Microwave Anisotropy Probe (WMAP) are consistent with the seven-year WMAP limits, with scale invariant ns = 1 excluded at 99.7% confidence level (CL) (3σ). A model with no CMB lensing is disfavored at 2.8σ. By measuring the third to seventh acoustic peaks, and probing the Silk damping regime, the ACT data improve limits on cosmological parameters that affect the small-scale CMB power. The ACT data combined with WMAP give a 6σ detection of primordial helium, with YP = 0.313 ± 0.044, and a 4σ detection of relativistic species, assumed to be neutrinos, with Neff = 5.3 ± 1.3 (4.6 ± 0.8 with BAO+H0 data). From the CMB alone the running of the spectral index is constrained to be dns/dln k = −0.034 ± 0.018, the limit on the tensor-to-scalar ratio is r < 0.25 (95% CL), and the possible contribution of Nambu cosmic strings to the power spectrum is constrained to string tension Gμ < 1.6 × 10−7 (95% CL).

[1]  Yannick Mellier,et al.  CFHTLenS: combined probe cosmological model comparison using 2D weak gravitational lensing , 2012, 1212.3338.

[2]  J. Bond,et al.  CONSTRAINTS ON PERTURBATIONS TO THE RECOMBINATION HISTORY FROM MEASUREMENTS OF THE COSMIC MICROWAVE BACKGROUND DAMPING TAIL , 2012, 1211.4634.

[3]  Kris Sigurdson,et al.  Cosmology of atomic dark matter , 2012, 1209.5752.

[4]  L. Miller,et al.  CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey – imaging data and catalogue products , 2012, 1210.0032.

[5]  Wendy L. Freedman,et al.  CARNEGIE HUBBLE PROGRAM: A MID-INFRARED CALIBRATION OF THE HUBBLE CONSTANT , 2012, 1208.3281.

[6]  Peter A. R. Ade,et al.  THE ATACAMA COSMOLOGY TELESCOPE: DATA CHARACTERIZATION AND MAPMAKING , 2012, 1208.0050.

[7]  I. Sendra,et al.  Correlations between cosmic strings and extra relativistic species , 2012, 1207.6266.

[8]  I. Buder,et al.  SECOND SEASON QUIET OBSERVATIONS: MEASUREMENTS OF THE COSMIC MICROWAVE BACKGROUND POLARIZATION POWER SPECTRUM AT 95 GHz , 2012, 1207.5034.

[9]  A. Melchiorri,et al.  The impact of a new median statistics $H_0$ prior on the evidence for dark radiation , 2012, 1205.6753.

[10]  V. Avila-Reese,et al.  THE STELLAR–SUBHALO MASS RELATION OF SATELLITE GALAXIES , 2012, 1204.0804.

[11]  A. Guth,et al.  What can the observation of nonzero curvature tell us , 2012, 1203.6876.

[12]  R. Nichol,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate at z = 0.57 from anisotropic clustering , 2012, 1203.6641.

[13]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[14]  M. Lueker,et al.  COSMIC MICROWAVE BACKGROUND CONSTRAINTS ON THE DURATION AND TIMING OF REIONIZATION FROM THE SOUTH POLE TELESCOPE , 2011, 1111.6386.

[15]  M. Lueker,et al.  A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES WITH TWO YEARS OF SOUTH POLE TELESCOPE OBSERVATIONS , 2011, 1111.0932.

[16]  Jasper Hasenkamp,et al.  Dark radiation from the axino solution of the gravitino problem , 2011, 1107.4319.

[17]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: A MEASUREMENT OF THE PRIMORDIAL POWER SPECTRU:VI , 2011 .

[18]  D. Spergel,et al.  The kinetic Sunyaev–Zel’dovich signal from inhomogeneous reionization: a parameter space study , 2011, 1112.1820.

[19]  O. Zahn,et al.  NEW LIMITS ON EARLY DARK ENERGY FROM THE SOUTH POLE TELESCOPE , 2011, 1110.5328.

[20]  M. Kunz,et al.  Cosmic string parameter constraints and model analysis using small scale Cosmic Microwave Background data , 2011, 1108.2730.

[21]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations , 2011, 1108.2635.

[22]  Matthew Colless,et al.  The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant , 2011, 1106.3366.

[23]  A. Melchiorri,et al.  Updated CMB constraints on dark matter annihilation cross sections , 2011, 1106.1528.

[24]  Bharat Ratra,et al.  Median Statistics and the Hubble Constant , 2011, 1105.5206.

[25]  M. Lueker,et al.  A MEASUREMENT OF THE DAMPING TAIL OF THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM WITH THE SOUTH POLE TELESCOPE , 2011, 1105.3182.

[26]  Edward J. Wollack,et al.  Evidence for dark energy from the cosmic microwave background alone using the Atacama Cosmology Telescope lensing measurements. , 2011, Physical review letters.

[27]  M. Blanton,et al.  COSMOLOGICAL CONSTRAINTS FROM GALAXY CLUSTERING AND THE MASS-TO-NUMBER RATIO OF GALAXY CLUSTERS: MARGINALIZING OVER THE PHYSICS OF GALAXY FORMATION , 2013, 1306.4686.

[28]  A. Melchiorri,et al.  Constraining Variations in the Fine Structure Constant in the presence of Early Dark Energy , 2011, 1104.0760.

[29]  L. Toffolatti,et al.  High-frequency predictions for number counts and spectral properties of extragalactic radio sources. New evidence of a break at mm wavelengths in spectra of bright blazar sources , 2011, 1103.5707.

[30]  J. Vázquez,et al.  A Bayesian study of the primordial power spectrum from a novel closed universe model , 2011, 1103.4619.

[31]  A. Melchiorri,et al.  Limits on Dark Radiation, Early Dark Energy, and Relativistic Degrees of Freedom , 2011, 1103.4132.

[32]  Stefano Casertano,et al.  A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.

[33]  Edward J. Wollack,et al.  CORRELATIONS IN THE (SUB)MILLIMETER BACKGROUND FROM ACT × BLAST , 2011, 1101.1517.

[34]  C. Hirata,et al.  HyRec: A fast and highly accurate primordial hydrogen and helium recombination code , 2010, 1011.3758.

[35]  M. Kunz,et al.  Detecting and distinguishing topological defects in future data from the CMBPol satellite , 2010, 1010.5662.

[36]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: COSMOLOGY FROM GALAXY CLUSTERS DETECTED VIA THE SUNYAEV–ZEL'DOVICH EFFECT , 2010, 1010.1025.

[37]  Peter A. R. Ade,et al.  THE ATACAMA COSMOLOGY TELESCOPE: A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM AT 148 AND 218 GHz FROM THE 2008 SOUTHERN SURVEY , 2010, 1009.0847.

[38]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: EXTRAGALACTIC SOURCES AT 148 GHz IN THE 2008 SURVEY , 2010, 1007.5256.

[39]  H. Trac,et al.  TEMPLATES FOR THE SUNYAEV–ZEL’DOVICH ANGULAR POWER SPECTRUM , 2010, 1006.2828.

[40]  M. Sullivan,et al.  SUPERNOVA CONSTRAINTS AND SYSTEMATIC UNCERTAINTIES FROM THE FIRST THREE YEARS OF THE SUPERNOVA LEGACY SURVEY , 2011, 1104.1443.

[41]  I. Buder,et al.  FIRST SEASON QUIET OBSERVATIONS: MEASUREMENTS OF COSMIC MICROWAVE BACKGROUND POLARIZATION POWER SPECTRA AT 43 GHz IN THE MULTIPOLE RANGE 25 ⩽ ⩽ 475 , 2010, 1012.3191.

[42]  J. Chluba,et al.  Towards a complete treatment of the cosmological recombination problem , 2010, 1010.3631.

[43]  S. Hannestad Neutrino physics from precision cosmology , 2010, 1007.0658.

[44]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: PHYSICAL PROPERTIES AND PURITY OF A GALAXY CLUSTER SAMPLE SELECTED VIA THE SUNYAEV–ZEL'DOVICH EFFECT , 2010, The Astrophysical Journal.

[45]  D. Nagai,et al.  IMPACT OF CLUSTER PHYSICS ON THE SUNYAEV–ZEL'DOVICH POWER SPECTRUM , 2010, 1006.1945.

[46]  M. Kunz,et al.  CMB power spectra from cosmic strings: Predictions for the Planck satellite and beyond , 2010, 1005.2663.

[47]  A. Moss,et al.  Updated constraints on the cosmic string tension , 2010, 1005.0479.

[48]  J. R. Bond,et al.  SIMULATIONS OF THE SUNYAEV–ZEL'DOVICH POWER SPECTRUM WITH ACTIVE GALACTIC NUCLEUS FEEDBACK , 2010, 1003.4256.

[49]  Jayaram N. Chengalur,et al.  Thick gas discs in faint dwarf galaxies , 2010, 1002.4474.

[50]  G. Steigman Primordial helium and the cosmic background radiation , 2010, 1002.3604.

[51]  D. Huterer,et al.  Measuring the Speed of Dark: Detecting Dark Energy Perturbations , 2010, 1002.1311.

[52]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: POWER SPECTRA AND WMAP-DERIVED PARAMETERS , 2010, 1001.4635.

[53]  T. Thuan,et al.  THE PRIMORDIAL ABUNDANCE OF 4He: EVIDENCE FOR NON-STANDARD BIG BANG NUCLEOSYNTHESIS , 2010, 1001.4440.

[54]  P. A. R. Ade,et al.  THE ATACAMA COSMOLOGY TELESCOPE: A MEASUREMENT OF THE 600 < ℓ < 8000 COSMIC MICROWAVE BACKGROUND POWER SPECTRUM AT 148 GHz , 2010, 1001.2934.

[55]  A. Moss,et al.  Tight constraints on F- and D-term hybrid inflation scenarios , 2010, 1001.0769.

[56]  P. A. R. Ade,et al.  ANGULAR POWER SPECTRA OF THE MILLIMETER-WAVELENGTH BACKGROUND LIGHT FROM DUSTY STAR-FORMING GALAXIES WITH THE SOUTH POLE TELESCOPE , 2009, 0912.4315.

[57]  Hiranya V. Peiris,et al.  The shape of the primordial power spectrum: A last stand before Planck data , 2009, 0912.0268.

[58]  B. D. Wandelt,et al.  Estimating the impact of recombination uncertainties on the cosmological parameter constraints from cosmic microwave background experiments , 2009, 0910.4383.

[59]  R. Sunyaev,et al.  Cosmological recombination: feedback of helium photons and its effect on the recombination spectrum , 2009, 0909.2378.

[60]  Alexander S. Szalay,et al.  Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.

[61]  Alexander S. Szalay,et al.  Cosmological constraints from the clustering of the Sloan Digital Sky Survey DR7 luminous red galaxies (vol 404, pg 60, 2010) , 2009, 0907.1659.

[62]  M. Halpern,et al.  SUBMITTED TO APJ Preprint typeset using LATEX style emulateapj v. 10/09/06 THE ATACAMA COSMOLOGY TELESCOPE (ACT): BEAM PROFILES AND FIRST SZ CLUSTER MAPS , 2022 .

[63]  P. A. R. Ade,et al.  MEASUREMENTS OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES WITH THE SOUTH POLE TELESCOPE , 2009, 0912.4317.

[64]  Kipac,et al.  The observed growth of massive galaxy clusters – IV. Robust constraints on neutrino properties , 2009, 0911.1788.

[65]  Yannick Mellier,et al.  Evidence of the accelerated expansion of the Universe from weak lensing tomography with COSMOS , 2009, 0911.0053.

[66]  P. Marshall,et al.  DISSECTING THE GRAVITATIONAL LENS B1608+656. II. PRECISION MEASUREMENTS OF THE HUBBLE CONSTANT, SPATIAL CURVATURE, AND THE DARK ENERGY EQUATION OF STATE , 2009, 0910.2773.

[67]  IfA,et al.  The Observed Growth of Massive Galaxy Clusters I: Statistical Methods and Cosmological Constraints , 2009, 0909.3098.

[68]  J. Vanderplas,et al.  FIRST-YEAR SLOAN DIGITAL SKY SURVEY-II SUPERNOVA RESULTS: HUBBLE DIAGRAM AND COSMOLOGICAL PARAMETERS , 2009, 0908.4274.

[69]  Jeremiah P. Ostriker,et al.  SIMULATIONS OF THE MICROWAVE SKY , 2009, 0908.0540.

[70]  M. Pospelov,et al.  Big Bang nucleosynthesis and particle dark matter , 2009, 0906.2087.

[71]  P. A. R. Ade,et al.  MEASUREMENT OF COSMIC MICROWAVE BACKGROUND POLARIZATION POWER SPECTRA FROM TWO YEARS OF BICEP DATA , 2009, 0906.1181.

[72]  E. Leitch,et al.  IMPROVED MEASUREMENTS OF THE TEMPERATURE AND POLARIZATION OF THE COSMIC MICROWAVE BACKGROUND FROM QUaD , 2009, 0906.1003.

[73]  J. Ostriker,et al.  EXPLORING THE ENERGETICS OF INTRACLUSTER GAS WITH A SIMPLE AND ACCURATE MODEL , 2009, 0905.3748.

[74]  Stefano Casertano,et al.  A REDETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE FROM A DIFFERENTIAL DISTANCE LADDER , 2009, 0905.0695.

[75]  James J. Bock,et al.  BLAST: CORRELATIONS IN THE COSMIC FAR-INFRARED BACKGROUND AT 250, 350, AND 500 μm REVEAL CLUSTERING OF STAR-FORMING GALAXIES , 2009, 0904.1200.

[76]  RICO: a new approach for fast and accurate representation of the cosmological recombination history , 2009 .

[77]  O. Zahn,et al.  SHARPENING THE PRECISION OF THE SUNYAEV–ZEL'DOVICH POWER SPECTRUM , 2009, 0903.5322.

[78]  Lawrence Berkeley National Laboratory,et al.  On the peculiar momentum of baryons after Reionization , 2009, 0903.2814.

[79]  J. Frieman,et al.  COSMOLOGICAL CONSTRAINTS FROM THE SLOAN DIGITAL SKY SURVEY MaxBCG CLUSTER CATALOG , 2009, 0902.3702.

[80]  Alexey Vikhlinin,et al.  CHANDRA CLUSTER COSMOLOGY PROJECT III: COSMOLOGICAL PARAMETER CONSTRAINTS , 2008, 0812.2720.

[81]  Lukas Hollenstein,et al.  Constraints on early dark energy from CMB lensing and weak lensing tomography , 2009, 0902.1494.

[82]  Armin Rest,et al.  IMPROVED DARK ENERGY CONSTRAINTS FROM ∼100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES , 2009, 0901.4804.

[83]  Amber D. Miller,et al.  A MEASUREMENT OF ARCMINUTE ANISOTROPY IN THE COSMIC MICROWAVE BACKGROUND WITH THE SUNYAEV–ZEL’DOVICH ARRAY , 2009, 0901.4342.

[84]  Astrophysics,et al.  SUBMITTED TO APJ Preprint typeset using LATEX style emulateapj v. 10/09/06 SPECTRAL ENERGY DISTRIBUTION OF RADIO SOURCES IN NEARBY CLUSTERS OF GALAXIES: IMPLICATIONS FOR SUNYAEV-ZEL’DOVICH EFFECT SURVEYS , 2022 .

[85]  P. A. R. Ade,et al.  HIGH-RESOLUTION CMB POWER SPECTRUM FROM THE COMPLETE ACBAR DATA SET , 2008, 0801.1491.

[86]  M. Peimbert The Primordial Helium Abundance , 2008, 0811.2980.

[87]  Anzhong Wang,et al.  Stable and ‘bounded excursion’ gravastars, and black holes in Einstein’s theory of gravity , 2008, 0809.4879.

[88]  S. Antusch,et al.  Phenomenology of hybrid scenarios of neutrino dark energy , 2008, 0807.4930.

[89]  H. Trac,et al.  Imprint of Inhomogeneous Hydrogen Reionization on the Temperature Distribution of the Intergalactic Medium , 2008, 0807.4530.

[90]  Xingang Chen Fine-tuning in DBI inflationary mechanism , 2008, 0807.3191.

[91]  E. Leitch,et al.  SECOND AND THIRD SEASON QUaD COSMIC MICROWAVE BACKGROUND TEMPERATURE AND POLARIZATION POWER SPECTRA , 2008, 0805.1944.

[92]  G. Steigman,et al.  Constraining the early-Universe baryon density and expansion rate , 2008, 0803.3465.

[93]  A. Slosar,et al.  Cosmic microwave weak lensing data as a test for the dark universe , 2008, 0803.2309.

[94]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: LIKELIHOODS AND PARAMETERS FROM THE WMAP DATA , 2008, 0803.0586.

[95]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[96]  Hiranya V. Peiris,et al.  ournal of C osmology and A stroparticle hysics J On minimally parametric primordial power spectrum reconstruction and the evidence for a red tilt , 2022 .

[97]  G. Lagache,et al.  Simulations of the cosmic infrared and submillimeter background for future large surveys I. Presentation and first application to Herschel/SPIRE and Planck/HFI , 2008, 0801.4299.

[98]  M. Kunz,et al.  Fitting cosmic microwave background data with cosmic strings and inflation. , 2008, Physical review letters.

[99]  Kazuhide Ichikawa,et al.  Primordial helium abundance from CMB: A constraint from recent observations and a forecast , 2007, 0712.4327.

[100]  M. Kunz,et al.  Cosmic microwave anisotropies from BPS semilocal strings , 2007, 0711.1842.

[101]  A. Moss,et al.  How well do we understand cosmological recombination , 2007, 0711.1357.

[102]  T. Souradeep,et al.  Estimation of primordial spectrum with post-WMAP 3-year data , 2007, 0709.1944.

[103]  David N. Spergel,et al.  Small-Angle CMB Temperature Anisotropies Induced by Cosmic Strings , 2007, 0708.1162.

[104]  C. Hirata,et al.  Primordial helium recombination. I. Feedback, line transfer, and continuum opacity , 2007, astro-ph/0702143.

[105]  M. Halpern,et al.  THEMICROWAVE ANISOTROPY PROBE (MAP )1 MISSION , 2003 .

[106]  H. Hoekstra,et al.  Very weak lensing in the CFHTLS Wide: Cosmology from cosmic shear in the linear regime , 2007, 0712.0884.

[107]  G. Steigman Primordial Nucleosynthesis in the Precision Cosmology Era , 2007, 0712.1100.

[108]  M. Sakellariadou,et al.  Numerical experiments with p F- and q D-strings: the formation of (p, q) bound states , 2007, 0706.3662.

[109]  J. Hamann,et al.  Observational bounds on the cosmic radiation density , 2007, 0705.0440.

[110]  M. Cortês,et al.  On what scale should inflationary observables be constrained , 2007, astro-ph/0702170.

[111]  J. Bond,et al.  Current models of the observable consequences of cosmic reionization and their detectability , 2007, astro-ph/0702099.

[112]  G. Stasińska,et al.  The Primordial Abundance of 4He: A Self-consistent Empirical Analysis of Systematic Effects in a Large Sample of Low-Metallicity H II Regions , 2007, astro-ph/0702072.

[113]  C. Xiong,et al.  Non-Gaussianity in fluctuations from warm inflation , 2007, astro-ph/0701302.

[114]  A. Slosar,et al.  Present bounds on the relativistic energy density in the Universe from cosmological observables , 2006, astro-ph/0612150.

[115]  P. A. R. Ade,et al.  MAXIPOL: Cosmic Microwave Background Polarimetry Using a Rotating Half-Wave Plate , 2006, astro-ph/0611394.

[116]  S. Tsujikawa,et al.  String-inspired cosmology: a late time transition from a scaling matter era to a dark energy universe caused by a Gauss–Bonnet coupling , 2006, hep-th/0608178.

[117]  R. Sunyaev,et al.  Cosmological hydrogen recombination: populations of the high‐level substates , 2006, astro-ph/0608242.

[118]  M. Kunz,et al.  CMB power spectrum contribution from cosmic strings using field-evolution simulations of the Abelian Higgs model , 2006, astro-ph/0605018.

[119]  A. Fraisse Limits on defects formation and hybrid inflationary models with three-year WMAP observations , 2006, astro-ph/0603589.

[120]  Edward J. Wollack,et al.  Three Year Wilkinson Microwave Anistropy Probe (WMAP) Observations: Polarization Analysis , 2006, astro-ph/0603450.

[121]  D. Scott,et al.  The effect of forbidden transitions on cosmological hydrogen and helium recombination , 2006, astro-ph/0610691.

[122]  Peihong Gu,et al.  Neutrino mass and baryon asymmetry from Dirac seesaw , 2006, hep-ph/0610275.

[123]  R. Battye,et al.  Constraints on supersymmetric hybrid inflation models , 2006 .

[124]  Edward W. Kolb,et al.  Inflation model constraints from the Wilkinson Microwave Anisotropy Probe three-year data , 2006, astro-ph/0605338.

[125]  I. Wasserman,et al.  Erratum: Bounds on cosmic strings from WMAP and SDSS [Phys. Rev. D 72, 23513 (2005)] , 2006 .

[126]  Edward J. Wollack,et al.  Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Temperature Analysis , 2006, astro-ph/0603451.

[127]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[128]  Tristan L. Smith,et al.  New cosmic microwave background constraint to primordial gravitational waves. , 2006, Physical review letters.

[129]  G. Robbers,et al.  Early dark energy cosmologies , 2006, astro-ph/0601544.

[130]  Tomo Takahashi,et al.  Reexamining the constraint on the helium abundance from the CMB , 2006, astro-ph/0601099.

[131]  M. Shaposhnikov,et al.  Baryon and lepton number violation rates across the electroweak crossover , 2005, hep-ph/0511246.

[132]  A. Melchiorri,et al.  A Measurement of the Angular Power Spectrum of the CMB Temperature Anisotropy from the 2003 Flight of BOOMERANG , 2005, astro-ph/0507494.

[133]  J. Lesgourgues,et al.  Massive neutrinos and cosmology , 2005, astro-ph/0603494.

[134]  B. Nath,et al.  AGN Heating, Thermal Conduction, and the Sunyaev-Zel'dovich Effect in Galaxy Groups and Clusters , 2005, astro-ph/0508120.

[135]  L. Verde,et al.  Smoothing spline primordial power spectrum reconstruction , 2005, astro-ph/0506707.

[136]  I. Wasserman,et al.  Bounds on cosmic strings from WMAP and SDSS , 2005, astro-ph/0503364.

[137]  C. Skordis,et al.  Fast and reliable Markov chain Monte Carlo technique for cosmological parameter estimation , 2005 .

[138]  G. Lagache,et al.  IRIS: A New Generation of IRAS Maps , 2004, astro-ph/0412216.

[139]  D. Mesa,et al.  Predictions for high-frequency radio surveys of extragalactic sources , 2004, astro-ph/0410709.

[140]  B. Fields,et al.  New BBN limits on physics beyond the standard model from 4He , 2004, astro-ph/0408033.

[141]  Jérôme Martin,et al.  Exploring the superimposed oscillations parameter space , 2004, hep-ph/0405249.

[142]  G. Steigman,et al.  BBN for pedestrians , 2004, astro-ph/0406320.

[143]  Jérôme Martin,et al.  Addendum to ‘‘Superimposed oscillations in the WMAP data?’’ , 2004, astro-ph/0402609.

[144]  U. Seljak,et al.  Signatures of relativistic neutrinos in CMB anisotropy and matter clustering , 2003, astro-ph/0310198.

[145]  B. Bassett,et al.  Mapping the dark energy with varying alpha , 2003, astro-ph/0307227.

[146]  H. Trac,et al.  Precision era of the kinetic Sunyaev–Zel'dovich effect: simulations, analytical models and observations and the power to constrain reionization , 2003, astro-ph/0304534.

[147]  B. Draine INTERSTELLAR DUST GRAINS , 2003, astro-ph/0304489.

[148]  S. Hannestad Neutrino masses and the number of neutrino species from WMAP and 2dFGRS , 2003, astro-ph/0303076.

[149]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[150]  H. Dole,et al.  Modelling infrared galaxy evolution using a phenomenological approach , 2002, astro-ph/0209115.

[151]  A. Melchiorri,et al.  Analytic marginalization over CMB calibration and beam uncertainty , 2002 .

[152]  J. Carlstrom,et al.  Detection of polarization in the cosmic microwave background using DASI , 2002, Nature.

[153]  J. Bekenstein Fine-structure constant variability, equivalence principle, and cosmology , 2002, gr-qc/0208081.

[154]  Wayne Hu,et al.  Mass Reconstruction with Cosmic Microwave Background Polarization , 2002 .

[155]  Max Tegmark,et al.  Separating the early universe from the late universe: Cosmological parameter estimation beyond the black box , 2002, astro-ph/0207047.

[156]  R. Jimenez,et al.  Efficient cosmological parameter estimation from microwave background anisotropies , 2002, astro-ph/0206014.

[157]  E. Komatsu,et al.  The Sunyaev-Zel'dovich angular power spectrum as a probe of cosmological parameters , 2002, astro-ph/0205468.

[158]  J. Bond,et al.  The Anisotropy of the Microwave Background to l = 3500: Mosaic Observations with the Cosmic Background Imager , 2002, astro-ph/0205388.

[159]  J. Bond,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 11/26/04 , 2022 .

[160]  S. Dodelson,et al.  Cosmic Microwave Background Anisotropies , 2001, astro-ph/0110414.

[161]  A. Melchiorri,et al.  The impact of an extra background of relativistic particles on the cosmological parameters derived from the cosmic microwave background , 2001, astro-ph/0110636.

[162]  E. Komatsu,et al.  Universal gas density and temperature profile , 2001, astro-ph/0106151.

[163]  A. Melchiorri,et al.  A Measurement by BOOMERANG of Multiple Peaks in the Angular Power Spectrum of the Cosmic Microwave Background , 2001, astro-ph/0104460.

[164]  Caltech,et al.  PUBLISHED IN THE ASTROPHYSICAL JOURNAL, 568, 38 Preprint typeset using L ATEX style emulateapj v. 14/09/00 DASI FIRST RESULTS: A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND ANGULAR , 2002 .

[165]  Adrian T. Lee,et al.  A High Spatial Resolution Analysis of the MAXIMA-1 Cosmic Microwave Background Anisotropy Data , 2001, astro-ph/0104459.

[166]  M. Fukugita,et al.  Cosmic Microwave Background Observables and Their Cosmological Implications , 2001 .

[167]  Princeton University,et al.  Probing Early Structure Formation with Far-Infrared Background Correlations , 2000, astro-ph/0009151.

[168]  V. V. Hristov,et al.  MAXIMA-1: A Measurement of the Cosmic Microwave Background Anisotropy on Angular Scales of 10'-5° , 2000, astro-ph/0005123.

[169]  A. Melchiorri,et al.  A flat Universe from high-resolution maps of the cosmic microwave background radiation , 2000, Nature.

[170]  L. Page,et al.  Characterizing the peak in the cosmic microwave background angular power spectrum , 2000, Physical review letters.

[171]  N. Gnedin Cosmological Reionization by Stellar Sources , 1999, astro-ph/9909383.

[172]  Sara Seager,et al.  How Exactly Did the Universe Become Neutral? , 1999, astro-ph/9912182.

[173]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[174]  D. Sasselov,et al.  A New Calculation of the Recombination Epoch , 1999, astro-ph/9909275.

[175]  E. Komatsu,et al.  Sunyaev-Zeldovich Fluctuations from Spatial Correlations between Clusters of Galaxies , 1999, The Astrophysical journal.

[176]  David J. Schlegel,et al.  Extrapolation of Galactic Dust Emission at 100 Microns to Cosmic Microwave Background Radiation Frequencies Using FIRAS , 1999, astro-ph/9905128.

[177]  L. Pogosian,et al.  Cosmic microwave background anisotropy from wiggly strings , 1999, astro-ph/9903361.

[178]  S. Dodelson,et al.  Precision Detection of the Cosmic Neutrino Background , 1998, astro-ph/9803095.

[179]  G. Dvali,et al.  Brane Inflation , 1998, hep-ph/9812483.

[180]  S. Dodelson,et al.  Impact of Inhomogeneous Reionization on Cosmic Microwave Background Anisotropy , 1998, astro-ph/9805012.

[181]  A. Hu,et al.  Secondary Cosmic Microwave Background Anisotropies in a Universe Reionized in Patches , 1998, astro-ph/9803188.

[182]  C. Burigana,et al.  Extragalactic source counts and contributions to the anisotropies of the cosmic microwave background: predictions for the Planck Surveyor mission , 1997, astro-ph/9711085.

[183]  O. Gnedin,et al.  Cosmological Neutrino Background Revisited , 1997, astro-ph/9712199.

[184]  A. Dolgov,et al.  Non-equilibrium corrections to the spectra of massless neutrinos in the early universe , 1997, hep-ph/9703315.

[185]  M. Kamionkowski,et al.  Statistics of cosmic microwave background polarization , 1996, astro-ph/9611125.

[186]  M. Limon,et al.  Millimetric Ground-based Observations of Cosmic Microwave Background Anisotropy , 1996, astro-ph/9609186.

[187]  U. Seljak,et al.  An all sky analysis of polarization in the microwave background , 1996, astro-ph/9609170.

[188]  D. Spergel,et al.  Weighing the universe with the cosmic microwave background. , 1995, Physical review letters.

[189]  S. Hannestad,et al.  Neutrino decoupling in the early Universe. , 1995, Physical review. D, Particles and fields.

[190]  White,et al.  Effect of physical assumptions on the calculation of microwave background anisotropies. , 1995, Physical review. D, Particles and fields.

[191]  Turner,et al.  CBR anisotropy and the running of the scalar spectral index. , 1995, Physical review. D, Particles and fields.

[192]  E. Bertschinger,et al.  Cosmological Perturbation Theory in the Synchronous and Conformal Newtonian Gauges , 1994, astro-ph/9401007.

[193]  M. Hindmarsh SMALL-SCALE MICROWAVE BACKGROUND FLUCTUATIONS FROM COSMIC STRINGS , 1993, astro-ph/9307040.

[194]  Andrei Linde,et al.  Hybrid inflation. , 1993, Physical review. D, Particles and fields.

[195]  S. Dodelson,et al.  Nonequilibrium neutrino statistical mechanics in the expanding Universe. , 1992, Physical review. D, Particles and fields.

[196]  G. Hinshaw,et al.  Structure in the COBE differential microwave radiometer first-year maps , 1992 .

[197]  Hume A. Feldman,et al.  Theory of cosmological perturbations , 1992 .

[198]  Mitra,et al.  Effect of neutrino heating in the early Universe on neutrino decoupling temperatures and nucleosynthesis. , 1991, Physical review. D, Particles and fields.

[199]  Bennett,et al.  High-resolution simulations of cosmic-string evolution. I. Network evolution. , 1990, Physical review. D, Particles and fields.

[200]  C. Wetterich COSMOLOGY AND THE FATE OF DILATATION SYMMETRY , 1988, 1711.03844.

[201]  Jeremiah P. Ostriker,et al.  Generation of microwave background fluctuations from nonlinear perturbations at the era of galaxy formation , 1986 .

[202]  E. P. S. Shellard,et al.  Cosmic Strings and Other Topological Defects , 1995 .

[203]  G. Steigman,et al.  Big bang nucleosynthesis , 1985 .

[204]  A. Stebbins,et al.  Microwave anisotropy due to cosmic strings , 1984, Nature.

[205]  Michael S. Turner,et al.  Spontaneous Creation of Almost Scale - Free Density Perturbations in an Inflationary Universe , 1983 .

[206]  Michael S. Turner,et al.  Primordial Nucleosynthesis Including Radiative, Coulomb, and Finite Temperature Corrections to Weak Rates , 1982 .

[207]  A. Starobinsky,et al.  Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations , 1982 .

[208]  Alan H. Guth,et al.  Fluctuations in the New Inflationary Universe , 1982 .

[209]  Stephen W. Hawking,et al.  The Development of Irregularities in a Single Bubble Inflationary Universe , 1982 .

[210]  J. Gunn,et al.  Cosmological Limits to the Number of Massive Leptons , 1977 .

[211]  J. Silk COSMIC BLACK-BODY RADIATION AND GALAXY FORMATION. , 1968 .

[212]  Phillip James Edwin Peebles,et al.  Primordial Helium Abundance and the Primordial Fireball. II , 1966 .

[213]  Bruce A. Peterson,et al.  On the Density of Neutral Hydrogen in Intergalactic Space , 1965 .

[214]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.