Medians and Means in Riemannian Geometry: Existence, Uniqueness and Computation
暂无分享,去创建一个
[1] M. Fréchet. Les éléments aléatoires de nature quelconque dans un espace distancié , 1948 .
[2] B. Afsari. Riemannian Lp center of mass: existence, uniqueness, and convexity , 2011 .
[3] Zvi Drezner. Technical Note - On Location Dominance on Spherical Surfaces , 1981, Oper. Res..
[4] Frederic Barbaresco. Geometric Radar Processing based on Fréchet distance: Information geometry versus Optimal Transport Theory , 2011, 2011 12th International Radar Symposium (IRS).
[5] Suresh Venkatasubramanian,et al. The geometric median on Riemannian manifolds with application to robust atlas estimation , 2009, NeuroImage.
[6] Frédéric Barbaresco,et al. Interactions between Symmetric Cone and Information Geometries: Bruhat-Tits and Siegel Spaces Models for High Resolution Autoregressive Doppler Imagery , 2009, ETVC.
[7] Marc Arnaudon,et al. Barycenters of measures transported by stochastic flows , 2005 .
[8] F. Clarke,et al. Nonlinear oscillations and boundary value problems for Hamiltonian systems , 1982 .
[9] Espérances d'une variable aléatoire à valeurs dans un espace métrique , 1998 .
[10] Adel A. Aly,et al. Location Dominance on Spherical Surfaces , 1979, Oper. Res..
[11] Frederic Barbaresco,et al. Robust statistical Radar Processing in Fréchet metric space: OS-HDR-CFAR and OS-STAP Processing in Siegel homogeneous bounded domains , 2011, 2011 12th International Radar Symposium (IRS).
[12] Frank Nielsen,et al. Medians and means in Finsler geometry , 2010, LMS J. Comput. Math..
[13] G. O. Wesolowsky,et al. Facility Location on a Sphere , 1978 .
[14] Le Yang. Médianes de mesures de probabilité dans les variétés riemanniennes et applications à la détection de cibles radar , 2011 .
[15] M. Bridson,et al. Metric Spaces of Non-Positive Curvature , 1999 .
[16] Gabriella Tarantello,et al. Subharmonic solutions with prescribed minimal period for nonautonomous Hamiltonian systems , 1988 .
[17] M. Émery,et al. Sur le barycentre d'une probabilité dans une variété , 1991 .
[18] F. Barbaresco. Innovative tools for radar signal processing Based on Cartan’s geometry of SPD matrices & Information Geometry , 2008, 2008 IEEE Radar Conference.
[19] Some properties of Fr\'echet medians in Riemannian manifolds , 2011, 1110.3899.
[20] J. Picard. Barycentres et martingales sur une variété , 1994 .
[21] S. Amari,et al. Information geometry of divergence functions , 2010 .
[22] Frank Nielsen,et al. On approximating the Riemannian 1-center , 2011, Comput. Geom..
[23] C. Villani. Optimal Transport: Old and New , 2008 .
[24] H. Karcher. Riemannian center of mass and mollifier smoothing , 1977 .
[25] P. Fletcher. Riemannian Median and Its Estimation , 2009 .
[26] Generalized Fermat's Problem , 1991, Canadian Mathematical Bulletin.
[27] Silvere Bonnabel,et al. Stochastic Gradient Descent on Riemannian Manifolds , 2011, IEEE Transactions on Automatic Control.
[28] R. Bhattacharya,et al. LARGE SAMPLE THEORY OF INTRINSIC AND EXTRINSIC SAMPLE MEANS ON MANIFOLDS—II , 2003 .
[29] B. Charlier. Necessary and sufficient condition for the existence of a Fréchet mean on the circle , 2013 .
[30] René Vidal,et al. On the Convergence of Gradient Descent for Finding the Riemannian Center of Mass , 2011, SIAM J. Control. Optim..
[31] Samuel R. Buss,et al. Spherical averages and applications to spherical splines and interpolation , 2001, TOGS.
[32] R. Bhattacharya,et al. Large sample theory of intrinsic and extrinsic sample means on manifolds--II , 2005, math/0507423.
[33] W. Kendall. Probability, Convexity, and Harmonic Maps with Small Image I: Uniqueness and Fine Existence , 1990 .
[34] C. R. Rao,et al. Differential metrics in probability spaces , 1984 .
[35] Hirohiko Shima,et al. Geometry of Hessian Structures , 2013, GSI.
[36] Paul H. Rabinowitz,et al. On subharmonic solutions of hamiltonian systems , 1980 .
[37] M. Arnaudon,et al. Stochastic algorithms for computing means of probability measures , 2011, 1106.5106.