Medians and Means in Riemannian Geometry: Existence, Uniqueness and Computation

This paper is a short summary of our recent work on the medians and means of probability measures in Riemannian manifolds. Firstly, the existence and uniqueness results of local medians are given. In order to compute medians in practical cases, we propose a subgradient algorithm and prove its convergence. After that, Frechet medians are considered. We prove their statistical consistency and give some quantitative estimations of their robustness with the aid of upper curvature bounds. We also show that, in compact Riemannian manifolds, the Frechet medians of generic data points are always unique. Stochastic and deterministic algorithms are proposed for computing Riemannian p-means. The rate of convergence and error estimates of these algorithms are also obtained. Finally, we apply the medians and the Riemannian geometry of Toeplitz covariance matrices to radar target detection.

[1]  M. Fréchet Les éléments aléatoires de nature quelconque dans un espace distancié , 1948 .

[2]  B. Afsari Riemannian Lp center of mass: existence, uniqueness, and convexity , 2011 .

[3]  Zvi Drezner Technical Note - On Location Dominance on Spherical Surfaces , 1981, Oper. Res..

[4]  Frederic Barbaresco Geometric Radar Processing based on Fréchet distance: Information geometry versus Optimal Transport Theory , 2011, 2011 12th International Radar Symposium (IRS).

[5]  Suresh Venkatasubramanian,et al.  The geometric median on Riemannian manifolds with application to robust atlas estimation , 2009, NeuroImage.

[6]  Frédéric Barbaresco,et al.  Interactions between Symmetric Cone and Information Geometries: Bruhat-Tits and Siegel Spaces Models for High Resolution Autoregressive Doppler Imagery , 2009, ETVC.

[7]  Marc Arnaudon,et al.  Barycenters of measures transported by stochastic flows , 2005 .

[8]  F. Clarke,et al.  Nonlinear oscillations and boundary value problems for Hamiltonian systems , 1982 .

[9]  Espérances d'une variable aléatoire à valeurs dans un espace métrique , 1998 .

[10]  Adel A. Aly,et al.  Location Dominance on Spherical Surfaces , 1979, Oper. Res..

[11]  Frederic Barbaresco,et al.  Robust statistical Radar Processing in Fréchet metric space: OS-HDR-CFAR and OS-STAP Processing in Siegel homogeneous bounded domains , 2011, 2011 12th International Radar Symposium (IRS).

[12]  Frank Nielsen,et al.  Medians and means in Finsler geometry , 2010, LMS J. Comput. Math..

[13]  G. O. Wesolowsky,et al.  Facility Location on a Sphere , 1978 .

[14]  Le Yang Médianes de mesures de probabilité dans les variétés riemanniennes et applications à la détection de cibles radar , 2011 .

[15]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[16]  Gabriella Tarantello,et al.  Subharmonic solutions with prescribed minimal period for nonautonomous Hamiltonian systems , 1988 .

[17]  M. Émery,et al.  Sur le barycentre d'une probabilité dans une variété , 1991 .

[18]  F. Barbaresco Innovative tools for radar signal processing Based on Cartan’s geometry of SPD matrices & Information Geometry , 2008, 2008 IEEE Radar Conference.

[19]  Some properties of Fr\'echet medians in Riemannian manifolds , 2011, 1110.3899.

[20]  J. Picard Barycentres et martingales sur une variété , 1994 .

[21]  S. Amari,et al.  Information geometry of divergence functions , 2010 .

[22]  Frank Nielsen,et al.  On approximating the Riemannian 1-center , 2011, Comput. Geom..

[23]  C. Villani Optimal Transport: Old and New , 2008 .

[24]  H. Karcher Riemannian center of mass and mollifier smoothing , 1977 .

[25]  P. Fletcher Riemannian Median and Its Estimation , 2009 .

[26]  Generalized Fermat's Problem , 1991, Canadian Mathematical Bulletin.

[27]  Silvere Bonnabel,et al.  Stochastic Gradient Descent on Riemannian Manifolds , 2011, IEEE Transactions on Automatic Control.

[28]  R. Bhattacharya,et al.  LARGE SAMPLE THEORY OF INTRINSIC AND EXTRINSIC SAMPLE MEANS ON MANIFOLDS—II , 2003 .

[29]  B. Charlier Necessary and sufficient condition for the existence of a Fréchet mean on the circle , 2013 .

[30]  René Vidal,et al.  On the Convergence of Gradient Descent for Finding the Riemannian Center of Mass , 2011, SIAM J. Control. Optim..

[31]  Samuel R. Buss,et al.  Spherical averages and applications to spherical splines and interpolation , 2001, TOGS.

[32]  R. Bhattacharya,et al.  Large sample theory of intrinsic and extrinsic sample means on manifolds--II , 2005, math/0507423.

[33]  W. Kendall Probability, Convexity, and Harmonic Maps with Small Image I: Uniqueness and Fine Existence , 1990 .

[34]  C. R. Rao,et al.  Differential metrics in probability spaces , 1984 .

[35]  Hirohiko Shima,et al.  Geometry of Hessian Structures , 2013, GSI.

[36]  Paul H. Rabinowitz,et al.  On subharmonic solutions of hamiltonian systems , 1980 .

[37]  M. Arnaudon,et al.  Stochastic algorithms for computing means of probability measures , 2011, 1106.5106.