Uniform flow in axisymmetric devices through permeability optimization

[1]  D. Robinson,et al.  Optimization of Flow in Additively Manufactured Porous Columns with Graded Permeability , 2022, AIChE Journal.

[2]  L. Attia,et al.  Scalable 3D-printed lattices for pressure control in fluid applications. , 2021, AIChE journal. American Institute of Chemical Engineers.

[3]  G. Paulino,et al.  Optimal and continuous multilattice embedding , 2021, Science Advances.

[4]  Carlos A. Grande,et al.  Pressure drop and heat transfer properties of cubic iso-reticular foams , 2018 .

[5]  D. Robinson,et al.  A Numerical model of exchange chromatography through 3‐D lattice structures , 2018 .

[6]  Frank C. Walsh,et al.  Engineering aspects of the design, construction and performance of modular redox flow batteries for energy storage , 2017 .

[7]  Sören Bartels,et al.  Numerical Approximation of Partial Differential Equations , 2016 .

[8]  William Roshan Quadros,et al.  CUBIT Geometry and Mesh Generation Toolkit 15.2 User Documentation , 2016 .

[9]  Ömer Akgiray,et al.  A revisit of pressure drop-flow rate correlations for packed beds of spheres , 2015 .

[10]  James K. Guest,et al.  Topology Optimization of Fixed-Geometry Fluid Diodes , 2015 .

[11]  Robert F. Singer,et al.  Periodic open cellular structures with ideal cubic cell geometry: Effect of porosity and cell orientation on pressure drop behavior , 2014 .

[12]  Vincent J. Ervin,et al.  Approximation of Axisymmetric Darcy Flow Using Mixed Finite Element Methods , 2013, SIAM J. Numer. Anal..

[13]  P R Fernandes,et al.  Permeability analysis of scaffolds for bone tissue engineering. , 2012, Journal of biomechanics.

[14]  O. Sigmund,et al.  Filters in topology optimization based on Helmholtz‐type differential equations , 2011 .

[15]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[16]  F. Gesztesy,et al.  A description of all self-adjoint extensions of the Laplacian and Kreĭn-type resolvent formulas on non-smooth domains , 2009, 0907.1750.

[17]  Daniil Svyatskiy,et al.  A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems , 2009, J. Comput. Phys..

[18]  A. Klarbring,et al.  Topology optimization of regions of Darcy and Stokes flow , 2007 .

[19]  James K. Guest,et al.  Optimizing multifunctional materials: Design of microstructures for maximized stiffness and fluid permeability , 2006 .

[20]  James K. Guest,et al.  Topology optimization of creeping fluid flows using a Darcy–Stokes finite element , 2006 .

[21]  A. Evgrafov The Limits of Porous Materials in the Topology Optimization of Stokes Flows , 2005 .

[22]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[23]  Mario Montes,et al.  Monolithic reactors for environmental applications: A review on preparation technologies , 2005 .

[24]  J. Petersson,et al.  Topology optimization of fluids in Stokes flow , 2003 .

[25]  Franck Assous,et al.  Theoretical tools to solve the axisymmetric Maxwell equations , 2002 .

[26]  Giuseppe Savaré,et al.  Regularity Results for Elliptic Equations in Lipschitz Domains , 1998 .

[27]  J. Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[28]  J. Guermond,et al.  Finite Elements I , 2021, Texts in Applied Mathematics.

[29]  O. Sigmund,et al.  A “poor man's approach” to topology optimization of cooling channels based on a Darcy flow model , 2018 .

[30]  Luc Tartar,et al.  The General Theory of Homogenization , 2010 .

[31]  James K. Guest,et al.  Design of maximum permeability material structures , 2007 .

[32]  John W. Dolan,et al.  Introduction to modern liquid chromatography , 1974 .

[33]  Hengguang Li,et al.  Finite element analysis for the axisymmetric Laplace operator on polygonal domains , 2011, J. Comput. Appl. Math..