Chemical approaches to transcriptional regulation.

[1]  Paul N Barlow,et al.  Structure of free MDM2 N-terminal domain reveals conformational adjustments that accompany p53-binding. , 2005, Journal of molecular biology.

[2]  A. Hamilton,et al.  Strategies for targeting protein-protein interactions with synthetic agents. , 2005, Angewandte Chemie.

[3]  T. Kodadek,et al.  A potent transactivation domain mimic with activity in living cells. , 2005, Journal of the American Chemical Society.

[4]  Michelle Arkin,et al.  Protein-protein interactions and cancer: small molecules going in for the kill. , 2005, Current opinion in chemical biology.

[5]  Jiandong Chen,et al.  p53 α-Helix mimetics antagonize p53/MDM2 interaction and activate p53 , 2005, Molecular Cancer Therapeutics.

[6]  S. Sebti,et al.  Terphenyl-based helical mimetics that disrupt the p53/HDM2 interaction. , 2005, Angewandte Chemie.

[7]  S. Hahn,et al.  Function of a eukaryotic transcription activator during the transcription cycle. , 2005, Molecular cell.

[8]  A. Levine,et al.  The p53 pathway: positive and negative feedback loops , 2005, Oncogene.

[9]  Joshua A. Kritzer,et al.  Solution Structure of a β-Peptide Ligand for hDM2 , 2005 .

[10]  A. Schepartz,et al.  Binding mode and transcriptional activation potential of high affinity ligands for the CBP KIX domain. , 2005, Journal of the American Chemical Society.

[11]  Chinmay Y. Majmudar,et al.  Functional specificity of artificial transcriptional activators. , 2005, Chemistry & biology.

[12]  Per Källblad,et al.  Isoindolinone-based inhibitors of the MDM2-p53 protein-protein interaction. , 2005, Bioorganic & medicinal chemistry letters.

[13]  Hong Yang,et al.  Activation of p53 by MDM2 antagonists can protect proliferating cells from mitotic inhibitors. , 2005, Cancer research.

[14]  Maxwell D Cummings,et al.  Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. , 2005, Journal of medicinal chemistry.

[15]  K. Gardner,et al.  Identification of small-molecule antagonists that inhibit an activator: coactivator interaction. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[16]  B. Stockwell Exploring biology with small organic molecules , 2004, Nature.

[17]  P. Dervan,et al.  Small molecule transcription factor mimic. , 2004, Journal of the American Chemical Society.

[18]  A. Mapp,et al.  A small molecule transcriptional activation domain. , 2004, Journal of the American Chemical Society.

[19]  Hong Ma,et al.  A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[20]  K. Audouze,et al.  Emerging classes of protein-protein interaction inhibitors and new tools for their development. , 2004, Current opinion in chemical biology.

[21]  David R. Liu,et al.  Engineering a ligand-dependent RNA transcriptional activator. , 2004, Chemistry & biology.

[22]  Donald J Abraham,et al.  A nonpeptidic sulfonamide inhibits the p53-mdm2 interaction and activates p53-dependent transcription in mdm2-overexpressing cells. , 2004, Journal of medicinal chemistry.

[23]  Joshua A. Kritzer,et al.  Helical β-Peptide Inhibitors of the p53-hDM2 Interaction , 2004 .

[24]  D. Livingston,et al.  Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway. , 2004, Cancer cell.

[25]  D. Lane,et al.  Small-molecule inhibitors of the p53 suppressor HDM2: have protein-protein interactions come of age as drug targets? , 2004, Trends in pharmacological sciences.

[26]  Oliver Zerbe,et al.  Using a β‐Hairpin To Mimic an α‐Helix: Cyclic Peptidomimetic Inhibitors of the p53–HDM2 Protein–Protein Interaction , 2004 .

[27]  Michelle R. Arkin,et al.  Small-molecule inhibitors of protein–protein interactions: progressing towards the dream , 2004, Nature Reviews Drug Discovery.

[28]  Peter E Wright,et al.  Solution structure of the KIX domain of CBP bound to the transactivation domain of c-Myb. , 2004, Journal of molecular biology.

[29]  Paul W Brandt-Rauf,et al.  NMR solution structure of a peptide from the mdm-2 binding domain of the p53 protein that is selectively cytotoxic to cancer cells. , 2004, Biochemistry.

[30]  M. Uesugi,et al.  A wrench-shaped synthetic molecule that modulates a transcription factor-coactivator interaction. , 2004, Journal of the American Chemical Society.

[31]  L. Vassilev,et al.  In Vivo Activation of the p53 Pathway by Small-Molecule Antagonists of MDM2 , 2004, Science.

[32]  R. Guy,et al.  Ligand-selective inhibition of the interaction of steroid receptor coactivators and estrogen receptor isoforms. , 2004, Chemistry & biology.

[33]  J. Katzenellenbogen,et al.  Design, synthesis, and in vitro biological evaluation of small molecule inhibitors of estrogen receptor α coactivator binding , 2004 .

[34]  Frank Petersen,et al.  Small-molecule antagonists of the oncogenic Tcf/β-catenin protein complex , 2004 .

[35]  A. Schepartz,et al.  Molecular recognition of protein surfaces: high affinity ligands for the CBP KIX domain. , 2003, Journal of the American Chemical Society.

[36]  Thomas Kodadek,et al.  Isolation of protein ligands from large peptoid libraries. , 2003, Journal of the American Chemical Society.

[37]  Yong Wang,et al.  Helix-stabilized cyclic peptides as selective inhibitors of steroid receptor–coactivator interactions , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[38]  T. Berg Modulation of protein-protein interactions with small organic molecules. , 2003, Angewandte Chemie.

[39]  L. Huang,et al.  Hypoxia-inducible Factor and Its Biomedical Relevance* , 2003, Journal of Biological Chemistry.

[40]  R Kiplin Guy,et al.  Novel selective inhibitors of the interaction of individual nuclear hormone receptors with a mutually shared steroid receptor coactivator 2. , 2003, Journal of the American Chemical Society.

[41]  K. Gaston,et al.  Transcriptional repression in eukaryotes: repressors and repression mechanisms , 2003, Cellular and Molecular Life Sciences CMLS.

[42]  A. Ansari,et al.  Modular design of artificial transcription factors. , 2002, Current opinion in chemical biology.

[43]  A. Fersht,et al.  Molecular mechanism of the interaction between MDM2 and p53. , 2002, Journal of molecular biology.

[44]  J. Manfredi,et al.  Multiple roles of the tumor suppressor p53 , 2002, Current opinion in oncology.

[45]  N. L. La Thangue,et al.  p300/CBP proteins: HATs for transcriptional bridges and scaffolds. , 2001, Journal of cell science.

[46]  A. Levine,et al.  Surfing the p53 network , 2000, Nature.

[47]  K. Melcher,et al.  The strength of acidic activation domains correlates with their affinity for both transcriptional and non-transcriptional proteins. , 2000, Journal of molecular biology.

[48]  Peter E Wright,et al.  Solution Structure of the KIX Domain of CBP Bound to the Transactivation Domain of CREB: A Model for Activator:Coactivator Interactions , 1997, Cell.

[49]  M. Uesugi,et al.  A nonnatural transcriptional coactivator. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[50]  A. Levine,et al.  Structure of the MDM2 Oncoprotein Bound to the p53 Tumor Suppressor Transactivation Domain , 1996, Science.