Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids.

The alkaline stability of 26 different quaternary ammonium groups (QA) is investigated for temperatures up to 160 °C and NaOH concentrations up to 10 mol L(-1) with the aim to provide a basis for the selection of functional groups for hydroxide exchange membranes in alkaline fuel cells and of ionic-liquid cations stable in basic conditions. Most QAs exhibit unexpectedly high alkaline stability with the exception of aromatic cations. β-Protons are found to be far less susceptible to nucleophilic attack than previously suggested, whereas the presence of benzyl groups, nearby hetero-atoms, or other electron-withdrawing species promote degradation reactions significantly. Cyclic QAs proved to be exceptionally stable, with the piperidine-based 6-azonia-spiro[5.5]undecane featuring the highest half-life at the chosen conditions. Absolute and relative stabilities presented herein stand in contrast to literature data, the differences being ascribed to solvent effects on degradation.

[1]  K. Kreuer,et al.  Hydroxide, halide and water transport in a model anion exchange membrane , 2014 .

[2]  M. Macnicol,et al.  CCCCXXIII.—Degradation of quaternary ammonium salts. Part I , 1928 .

[3]  G. Mulder,et al.  FUEL CELLS – ALKALINE FUEL CELLS | Overview , 2009 .

[4]  P. Schleyer,et al.  Evaluation of strain in hydrocarbons. The strain in adamantane and its origin , 1970 .

[5]  W. D. Harkins,et al.  The effect of salts on the critical concentration for the formation of micelles in colloidal electrolytes. , 1947, Journal of the American Chemical Society.

[6]  Y. Ein‐Eli,et al.  Influence of Sulfone Linkage on the Stability of Aromatic Quaternary Ammonium Polymers for Alkaline Fuel Cells , 2014 .

[7]  C. A. Bunton,et al.  Micellar effects upon nucleophilic aromatic and aliphatic substitution , 1968 .

[8]  C. Arges,et al.  Assessing the influence of different cation chemistries on ionic conductivity and alkaline stability of anion exchange membranes , 2012 .

[9]  Plamen Atanassov,et al.  Anion-exchange membranes in electrochemical energy systems , 2014 .

[10]  Derek L. Patton,et al.  Quarternary Ammonium and Phosphonium Based Anion Exchange Membranes for Alkaline Fuel Cells , 2010 .

[11]  J. V. Braun,et al.  Über den Zerfall quartärer Ammonium- und Sulfoniumhydroxyde. IV , 1929 .

[12]  J. Varcoe,et al.  Anion-exchange membranes for alkaline polymer electrolyte fuel cells: comparison of pendent benzyltrimethylammonium- and benzylmethylimidazolium-head-groups , 2012 .

[13]  T. Müller,et al.  Hydroamination: direct addition of amines to alkenes and alkynes. , 2008, Chemical reviews.

[14]  F. Alloin,et al.  Polyepichlorhydrin membranes for alkaline fuel cells: sorption and conduction properties. , 2008, The journal of physical chemistry. B.

[15]  F. Effenberger,et al.  Anion-exchange membranes with improved alkaline stability , 1990 .

[16]  Michael A. Hickner,et al.  Quantitative 1H NMR Analysis of Chemical Stabilities in Anion-Exchange Membranes. , 2013, ACS macro letters.

[17]  B. Améduri,et al.  Polymeric materials as anion-exchange membranes for alkaline fuel cells , 2011 .

[18]  Dc Kitty Nijmeijer,et al.  Anion exchange membranes for alkaline fuel cells: A review , 2011 .

[19]  D. Stamatialis,et al.  Anion-exchange membranes containing diamines: preparation and stability in alkaline solution , 2004 .

[20]  K. Laidler,et al.  Development of transition-state theory , 1983 .

[21]  Liang Wu,et al.  Environmentally friendly synthesis of alkaline anion exchange membrane for fuel cells via a solvent , 2011 .

[22]  Junhua Wang,et al.  Novel Hydroxide-Conducting Polyelectrolyte Composed of an Poly(arylene ether sulfone) Containing Pendant Quaternary Guanidinium Groups for Alkaline Fuel Cell Applications , 2010 .

[23]  Hu Wang,et al.  A facile strategy for the synthesis of guanidinium-functionalized polymer as alkaline anion exchange membrane with improved alkaline stability , 2014 .

[24]  F. Alloin,et al.  Anionic membrane based on polyepichlorhydrin matrix for alkaline fuel cell: Synthesis, physical and electrochemical properties , 2007 .

[25]  Nanwen Li,et al.  Comb-shaped polymers to enhance hydroxide transport in anion exchange membranes , 2012 .

[26]  C. Stirling Evaluation of the effect of strain upon reactivity , 1985 .

[27]  Y. Elabd,et al.  Chemical Stability of Anion Exchange Membranes for Alkaline Fuel Cells , 2013 .

[28]  D. F. Evans,et al.  Critical micelle concentrations for alkyltrimethylammonium bromides in water from 25 to 160°C , 1984 .

[29]  L. Pratt,et al.  Stability of Cations for Anion Exchange Membrane Fuel Cells , 2007 .

[30]  H. Abruña,et al.  Phosphonium-functionalized polyethylene: a new class of base-stable alkaline anion exchange membranes. , 2012, Journal of the American Chemical Society.

[31]  James Larminie,et al.  Fuel Cell Systems Explained , 2000 .

[32]  F. Beyer,et al.  Relationships between Structure and Alkaline Stability of Imidazolium Cations for Fuel Cell Membrane Applications. , 2014, ACS macro letters.

[33]  A. Appleby FUEL CELLS – OVERVIEW | Introduction , 2009 .

[34]  S. Pine The Base-Promoted Rearrangements of Quaternary Ammonium Salts , 2011 .

[35]  L. Jörissen,et al.  The application of covalently cross-linked BrPPO as AEM in alkaline DMFC , 2013 .

[36]  C. Arges,et al.  Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes , 2013, Proceedings of the National Academy of Sciences.

[37]  J. Varcoe,et al.  The alkali stability of radiation-grafted anion-exchange membranes containing pendent 1-benzyl-2,3-dimethylimidazolium head-groups , 2013 .

[38]  R. Bader,et al.  Theoretical analysis of hydrocarbon properties. 2. Additivity of group properties and the origin of strain energy , 1987 .

[39]  Junhua Wang,et al.  Synthesis of Soluble Poly(arylene ether sulfone) Ionomers with Pendant Quaternary Ammonium Groups for Anion Exchange Membranes , 2009 .

[40]  T. Sata,et al.  Change of anion exchange membranes in an aqueous sodium hydroxide solution at high temperature , 1996 .

[41]  Ram S. Mohan,et al.  Reactivity of ionic liquids , 2007 .

[42]  M. Cifrain,et al.  Hydrogen/oxygen (air) fuel cells with alkaline electrolytes , 2010 .

[43]  H. Yanagi,et al.  Anion Exchange Membrane and Ionomer for Alkaline Membrane Fuel Cells (AMFCs) , 2008 .

[44]  H. Eyring The Activated Complex in Chemical Reactions , 1935 .

[45]  S. P. Moulik,et al.  Counter-ion Effect on Micellization of Ionic Surfactants: A Comprehensive Understanding with Two Representatives, Sodium Dodecyl Sulfate (SDS) and Dodecyltrimethylammonium Bromide (DTAB) , 2013 .

[46]  F. Yan,et al.  Alkaline imidazolium- and quaternary ammonium-functionalized anion exchange membranes for alkaline fuel cell applications , 2012 .

[47]  H. Booth,et al.  50. The thermal decomposition of quaternary ammonium hydroxides. Part I. Methohydroxides derived from NN-dialkylanilines and related compounds , 1963 .

[48]  Qiang Zhang,et al.  A novel guanidinium grafted poly(aryl ether sulfone) for high-performance hydroxide exchange membranes. , 2010, Chemical communications.

[49]  M. Hibbs Alkaline stability of poly(phenylene)‐based anion exchange membranes with various cations , 2013 .

[50]  M. Hickner,et al.  Degradation of imidazolium- and quaternary ammonium-functionalized poly(fluorenyl ether ketone sulfone) anion exchange membranes. , 2012, ACS applied materials & interfaces.

[51]  B. Pivovar,et al.  Hydroxide Degradation Pathways for Substituted Trimethylammonium Cations: A DFT Study , 2012 .

[52]  P. Wenzl,et al.  Extremely base-resistant organic phosphazenium cations. , 2005, Chemistry.

[53]  G. Cerichelli,et al.  Structural and mechanistic effects on the rates of ring-opening reactions in the 5-16-membered-ring region , 1980 .

[54]  Qifeng Zhang,et al.  Synthesis and alkaline stability of novel cardo poly(aryl ether sulfone)s with pendent quaternary ammonium aliphatic side chains for anion exchange membranes , 2010 .

[55]  S. Nam,et al.  Polybenzimidazolium hydroxides – Structure, stability and degradation , 2012 .

[56]  J. Brunet,et al.  Functionalisation of alkenes: catalytic amination of monoolefins , 1989 .

[57]  J. Johnston,et al.  C.—Tetramethylammonium hydroxide , 1905 .

[58]  K. Yamaguchi,et al.  Synthesis and thermal stability of novel anion exchange resins with spacer chains , 1997 .

[59]  Jing Pan,et al.  High‐Performance Alkaline Polymer Electrolyte for Fuel Cell Applications , 2010 .

[60]  James Larminie,et al.  Fuel Cell Systems Explained: Larminie/Fuel Cell Systems Explained , 2003 .