The Cellular Automaton Interpretation of Quantum Mechanics
暂无分享,去创建一个
[1] G. Yocky,et al. Decoherence , 2018, Principles of Quantum Computation and Information.
[2] P. Libby. The Scientific American , 1881, Nature.
[3] G. Hooft. Relating the quantum mechanics of discrete systems to standard canonical quantum mechanics , 2012, 1204.4926.
[4] D. Bohm. A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .
[5] Daniel B. Miller,et al. Two-state, reversible, universal cellular automata in three dimensions , 2005, CF '05.
[6] S. Coleman. There are no Goldstone bosons in two dimensions , 1973 .
[7] L. Susskind,et al. Continuum strings from discrete field theories , 1988 .
[8] G. Hooft. On the Quantum Structure of a Black Hole , 1985 .
[9] J. Smith,et al. Field theory in particle physics , 1986 .
[10] G. ’t Hooft. QUANTIZATION OF POINT PARTICLES IN 2+1 DIMENSIONAL GRAVITY AND SPACE-TIME DISCRETENESS , 1996 .
[11] 田中 正,et al. SUPERSTRING THEORY , 1989, The Lancet.
[12] Duality Between a Deterministic Cellular Automaton and a Bosonic Quantum Field Theory in 1+1 Dimensions , 2012, 1205.4107.
[13] Bryce S. DeWitt,et al. The Many-Universes Interpretation of Quantum Mechanics , 2015 .
[14] M. Seevinck. Parts and Wholes. An Inquiry into Quantum and Classical Correlations , 2008, 0811.1027.
[15] J. Polchinski. Superstring theory and beyond , 1998 .
[16] G. Hooft,et al. Three-dimensional Einstein gravity: Dynamics of flat space , 1984 .
[17] E. Schrödinger. Die gegenwärtige Situation in der Quantenmechanik , 1935, Naturwissenschaften.
[18] H. Zeh. On the interpretation of measurement in quantum theory , 1970 .
[19] G. Hooft. Classical N-particle cosmology in 2+1 dimensions , 1993 .
[20] P. Mannheim. Making the Case for Conformal Gravity , 2011, 1101.2186.
[21] R M Sweet. Introduction to crystallography. , 1985, Methods in enzymology.
[22] THE BLACK HOLE HORIZON AS A DYNAMICAL SYSTEM , 2006, gr-qc/0606026.
[23] Simon Kochen,et al. The Strong Free Will Theorem , 2008, 0807.3286.
[24] J. G. Russo. Discrete strings and deterministic cellular strings , 1993 .
[25] Classical cellular automata and quantum field theory , 2010 .
[26] S. Carlip. Exact quantum scattering in 2 + 1 dimensional gravity , 1989 .
[27] A Generalized Shannon Sampling Theorem, Fields at the Planck Scale as Bandlimited Signals , 1999, hep-th/9905114.
[28] G. Hooft. Cosmology in 2+1 dimensions , 1993 .
[29] M. Schlosshauer. Decoherence, the measurement problem, and interpretations of quantum mechanics , 2003, quant-ph/0312059.
[30] P. Pearle. Reduction of the state vector by a nonlinear Schrödinger equation , 1976 .
[31] Gerard 't Hooft,et al. Quantum field theoretic behavior of a deterministic cellular automaton , 1992 .
[32] J. Wheeler. Information, physics, quantum: the search for links , 1999 .
[33] R. Glauber. Coherent and incoherent states of the radiation field , 1963 .
[34] H. Everett. "Relative State" Formulation of Quantum Mechanics , 1957 .
[35] Abraham Paiz,et al. Niels Bohr’s Times, in Physics, Philosophy, and Polity , 1992 .
[36] G. Hooft. Quantum gravity as a dissipative deterministic system , 1999, gr-qc/9903084.
[37] Quantum origin of quantum jumps: Breaking of unitary symmetry induced by information transfer in the transition from quantum to classical , 2007, quant-ph/0703160.
[38] Albert Einstein,et al. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .
[39] L. Susskind. The world as a hologram , 1994, hep-th/9409089.
[40] R. Walde,et al. Introduction to Lie groups and Lie algebras , 1973 .
[41] Sabine Hossenfelder,et al. Testing superdeterministic conspiracy , 2014, 1401.0286.
[42] S. Hawking. Particle creation by black holes , 1975 .
[43] G. Hooft. A Class of Elementary Particle Models Without Any Adjustable Real Parameters , 2011, 1104.4543.
[44] J. Polchinski. An introduction to the bosonic string , 1998 .
[45] Nina Byers. E. Noether's Discovery of the Deep Connection Between Symmetries and Conservation Laws , 1998 .
[46] Gerard 't Hooft,et al. Entangled quantum states in a local deterministic theory , 2009, 0908.3408.
[47] J. Bell. On the impossible pilot wave , 1982 .
[48] A. Shimony,et al. Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .
[49] W. Zurek. The Environment, Decoherence and the Transition from Quantum to Classical , 1991 .
[50] THE SCATTERING MATRIX APPROACH FOR THE QUANTUM BLACK HOLE: AN OVERVIEW , 1996, gr-qc/9607022.
[51] B. Kaufman. Crystal Statistics: II. Partition Function Evaluated by Spinor Analysis. III. Short-Range Order in a Binary Ising Lattice. , 1949 .
[52] F. Wilczek. Quantum Field Theory , 1998, hep-th/9803075.
[53] L. Ryder,et al. Quantum Field Theory , 2001, Foundations of Modern Physics.
[54] G. Hooft. Quantization of Discrete Deterministic Theories by Hilbert Space Extension , 1990 .
[55] P. Grangier,et al. Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment : A New Violation of Bell's Inequalities , 1982 .
[56] Gerard 't Hooft,et al. Equivalence relations between deterministic and quantum mechanical systems , 1988 .
[57] Rupert Ursin,et al. Violation of local realism with freedom of choice , 2008, Proceedings of the National Academy of Sciences.
[58] Max Jammer,et al. The conceptual development of quantum mechanics , 1966 .
[59] G. Hooft. The Conformal Constraint in Canonical Quantum Gravity , 2010, 1011.0061.
[60] G. Hooft. Quantization of point particles in (2+1)-dimensional gravity and spacetime discreteness , 1996, gr-qc/9601014.
[61] K. Symanzik,et al. Small distance behaviour in field theory and power counting , 1970 .
[62] J. Goldstone,et al. Field theories with « Superconductor » solutions , 1961 .
[63] David Wallace. Everettian Rationality: defending Deutsch's approach to probability in the Everett interpretation , 2003 .
[64] A. Gleason. Measures on the Closed Subspaces of a Hilbert Space , 1957 .
[65] Jason Gallicchio,et al. Testing Bell's inequality with cosmic photons: closing the setting-independence loophole. , 2013, Physical review letters.
[66] G. Hooft. The conceptual basis of Quantum Field Theory , 2002 .
[67] Hamiltonian formalism for integer-valued variables and integer time steps and a possible application in quantum physics , 2013, 1312.1229.
[68] E. Wigner,et al. Über das Paulische Äquivalenzverbot , 1928 .
[69] S. Adler. Quantum Theory as an Emergent Phenomenon: Foundations and Phenomenology , 2012 .
[70] C. Torrence,et al. A Practical Guide to Wavelet Analysis. , 1998 .
[71] Louis Vervoort,et al. Bell’s Theorem: Two Neglected Solutions , 2012, Foundations of Physics.
[72] Kris McDaniel,et al. Parts and Wholes , 2010 .
[73] J. Bell. On the Einstein-Podolsky-Rosen paradox , 1964 .