Nondegenerate three-dimensional complex Euclidean superintegrable systems and algebraic varieties

A classical (or quantum) second order superintegrable system is an integrable n-dimensional Hamiltonian system with potential that admits 2n−1 functionally independent second order constants of the motion polynomial in the momenta, the maximum possible. Such systems have remarkable properties: multi-integrability and multiseparability, an algebra of higher order symmetries whose representation theory yields spectral information about the Schrodinger operator, deep connections with special functions, and with quasiexactly solvable systems. Here, we announce a complete classification of nondegenerate (i.e., four-parameter) potentials for complex Euclidean 3-space. We characterize the possible superintegrable systems as points on an algebraic variety in ten variables subject to six quadratic polynomial constraints. The Euclidean group acts on the variety such that two points determine the same superintegrable system if and only if they lie on the same leaf of the foliation. There are exactly ten nondegenerat...

[1]  W. Miller,et al.  Fine structure for 3D second-order superintegrable systems: three-parameter potentials , 2007 .

[2]  W. Miller,et al.  Nondegenerate superintegrable systems in n-dimensional Euclidean spaces , 2007 .

[3]  W. Miller,et al.  Second-order superintegrable systems in conformally flat spaces. V. Two- and three-dimensional quantum systems , 2006 .

[4]  W. Miller,et al.  Second order superintegrable systems in conformally flat spaces. IV. The classical 3D Stäckel transform and 3D classification theory , 2006 .

[5]  C. Daskaloyannis,et al.  Unified treatment and classification of superintegrable systems with integrals quadratic in momenta on a two-dimensional manifold , 2004, math-ph/0412055.

[6]  W. Miller,et al.  Second order superintegrable systems in conformally flat spaces. III. Three-dimensional classical structure theory , 2005 .

[7]  J. Horwood,et al.  Invariant Classification of Orthogonally Separable Hamiltonian Systems in Euclidean Space , 2005, math-ph/0605023.

[8]  W. Miller,et al.  Second order superintegrable systems in conformally flat spaces. II. The classical two-dimensional Stäckel transform , 2005 .

[9]  S. Rauch-Wojciechowski,et al.  What an Effective Criterion of Separability says about the Calogero Type Systems , 2005 .

[10]  W. Miller,et al.  Superintegrable systems in Darboux spaces , 2003, math-ph/0307039.

[11]  W. Miller,et al.  On superintegrable symmetry-breaking potentials in N-dimensional Euclidean space , 2002 .

[12]  P. Winternitz,et al.  Superintegrability in a two-dimensional space of nonconstant curvature , 2001, math-ph/0108015.

[13]  W. Miller,et al.  Completeness of superintegrability in two-dimensional constant-curvature spaces , 2001, math-ph/0102006.

[14]  W. Miller,et al.  Completeness of multiseparable superintegrability on the complex 2-sphere , 2000 .

[15]  W. Miller,et al.  Completeness of multiseparable superintegrability in E2,C , 2000 .

[16]  M. F. Ranada Superintegrable n=2 systems, quadratic constants of motion, and potentials of Drach , 1997 .

[17]  C. Grosche,et al.  Path Integral Discussion for Smorodinsky‐Winternitz Potentials: I. Two‐ and Three Dimensional Euclidean Space , 1994 .

[18]  K. Kokkotas,et al.  Deformed oscillator algebras for two-dimensional quantum superintegrable systems. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[19]  N. Evans Group theory of the Smorodinsky-Winternitz system , 1991 .

[20]  A. Zhedanov,et al.  Quadratic algebra as a 'hidden' symmetry of the Hartmann potential , 1991 .

[21]  N. Evans Super-integrability of the Winternitz system , 1990 .

[22]  Evans,et al.  Superintegrability in classical mechanics. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[23]  E. Kalnins Separation of variables for Riemannian spaces of constant curvature , 1986 .

[24]  G. Pogosyan,et al.  Elliptic basis of circular oscillator , 1985 .

[25]  G. Pogosyan,et al.  HIDDEN SYMMETRY, SEPARATION OF VARIABLES AND INTERBASIS EXPANSIONS IN THE TWO-DIMENSIONAL HYDROGEN ATOM , 1985 .

[26]  G. Pogosyan,et al.  Two-dimensional hydrogen atom. I. Elliptic basis , 1984 .

[27]  G. Reid,et al.  Separation of variables for complex Riemannian spaces of constant curvature - I. Orthogonal separable coordinates for Snc and Enc , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[28]  S. Wojciechowski Superintegrability of the Calogero-Moser system☆ , 1983 .

[29]  Francesco Calogero,et al.  Solution of the One‐Dimensional N‐Body Problems with Quadratic and/or Inversely Quadratic Pair Potentials , 1971 .

[30]  F. Calogero Solution of a three-body problem in one-dimension , 1969 .

[31]  H. McIntosh,et al.  Symmetry of the Two‐Dimensional Hydrogen Atom , 1969 .

[32]  P. Winternitz,et al.  ON HIGHER SYMMETRIES IN QUANTUM MECHANICS , 1965 .