Quantum Topological Error Correction Codes are Capable of Improving the Performance of Clifford Gates

The employment of quantum error correction codes (QECCs) within quantum computers potentially offers a reliability improvement for both quantum computation and communications tasks. However, incorporating quantum gates for performing error correction potentially introduces more sources of quantum decoherence into the quantum computers. In this scenario, the primary challenge is to find the sufficient condition required by each of the quantum gates for beneficially employing QECCs in order to yield reliability improvements given that the quantum gates utilized by the QECCs also introduce quantum decoherence. In this treatise, we approach this problem by firstly presenting the general framework of protecting quantum gates by the amalgamation of the transversal configuration of quantum gates and quantum stabilizer codes (QSCs), which can be viewed as syndrome-based QECCs. Secondly, we provide examples of the advocated framework by invoking quantum topological error correction codes (QTECCs) for protecting both transversal Hadamard gates and CNOT gates. The simulation and analytical results explicitly show that by utilizing QTECCs, the fidelity of the quantum gates can be beneficially improved, provided that quantum gates satisfying a certain minimum depolarization fidelity threshold <inline-formula> <tex-math notation="LaTeX">$(F_{th})$ </tex-math></inline-formula> are available. For instance, for protecting transversal Hadamard gates, the minimum fidelity values required for each of the gates in order to attain fidelity improvements are 99.74%, 99.73%, 99.87%, and 99.86%, when they are protected by colour, rotated-surface, surface, and toric codes, respectively. These specific <inline-formula> <tex-math notation="LaTeX">$F_{th}$ </tex-math></inline-formula> values are obtained for a very large number of physical qubits <inline-formula> <tex-math notation="LaTeX">$(n \rightarrow \infty)$ </tex-math></inline-formula>, when the quantum coding rate of the QTECCs approaches zero <inline-formula> <tex-math notation="LaTeX">$(r_{Q} \rightarrow 0)$ </tex-math></inline-formula>. Ultimately, the framework advocated can be beneficially exploited for employing QSCs to protect large-scale quantum computers.

[1]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[2]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[3]  N. Sloane,et al.  Quantum error correction via codes over GF(4) , 1996, Proceedings of IEEE International Symposium on Information Theory.

[4]  Lajos Hanzo,et al.  Duality of Quantum and Classical Error Correction Codes: Design Principles and Examples , 2019, IEEE Communications Surveys & Tutorials.

[5]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[6]  David Poulin,et al.  Quantum Serial Turbo Codes , 2009, IEEE Transactions on Information Theory.

[7]  Markus Grassl,et al.  Variations on Encoding Circuits for Stabilizer Quantum Codes , 2011, IWCC.

[8]  H. Bombin Clifford gates by code deformation , 2010, 1006.5260.

[9]  T. Ralph,et al.  Quantum process tomography of a controlled-NOT gate. , 2004, Physical review letters.

[10]  Soon Xin Ng,et al.  Fifteen Years of Quantum LDPC Coding and Improved Decoding Strategies , 2015, IEEE Access.

[11]  R. Cleve,et al.  Efficient computations of encodings for quantum error correction , 1996, quant-ph/9607030.

[12]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[13]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[14]  R Hanson,et al.  Universal Dynamical Decoupling of a Single Solid-State Spin from a Spin Bath , 2010, Science.

[15]  Tomas Jochym-O'Connor,et al.  Fault-tolerant gates via homological product codes , 2018, Quantum.

[16]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[17]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[18]  J. P. Dehollain,et al.  A two-qubit logic gate in silicon , 2014, Nature.

[19]  Joseph M Renes,et al.  Efficient polar coding of quantum information. , 2011, Physical review letters.

[20]  Paul Adrien Maurice Dirac,et al.  A new notation for quantum mechanics , 1939, Mathematical Proceedings of the Cambridge Philosophical Society.

[21]  Austin G. Fowler,et al.  Surface code quantum computing by lattice surgery , 2011, 1111.4022.

[22]  Alexei E. Ashikhmin,et al.  Robust quantum error syndrome extraction by classical coding , 2014, 2014 IEEE International Symposium on Information Theory.

[23]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[24]  Alexei Ashikhmin,et al.  Quantum convolutional data-syndrome codes , 2019, 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC).

[25]  Andrew J. Landahl,et al.  Fault-tolerant quantum computing with color codes , 2011, 1108.5738.

[26]  Lajos Hanzo,et al.  Quantum Coding Bounds and a Closed-Form Approximation of the Minimum Distance Versus Quantum Coding Rate , 2017, IEEE Access.

[27]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[28]  А Е Китаев,et al.  Квантовые вычисления: алгоритмы и исправление ошибок@@@Quantum computations: algorithms and error correction , 1997 .

[29]  Lajos Hanzo,et al.  The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure , 2015, IEEE Access.

[30]  Koen Bertels,et al.  Code deformation and lattice surgery are gauge fixing , 2018, New Journal of Physics.

[31]  Lajos Hanzo,et al.  Quantum Error Correction Protects Quantum Search Algorithms Against Decoherence , 2016, Scientific Reports.

[32]  A. Calderbank,et al.  Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.

[33]  A. Politi,et al.  Silica-on-Silicon Waveguide Quantum Circuits , 2008, Science.

[34]  T. Brun,et al.  Teleportation-based Fault-tolerant Quantum Computation in Multi-qubit Large Block Codes , 2015, 1504.03913.

[35]  David Poulin,et al.  Fault-tolerant conversion between the Steane and Reed-Muller quantum codes. , 2014, Physical review letters.

[36]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[37]  A. Fowler,et al.  High-threshold universal quantum computation on the surface code , 2008, 0803.0272.

[38]  Ivan B. Djordjevic,et al.  Quantum Information Processing and Quantum Error Correction: An Engineering Approach , 2012 .

[39]  E. Knill,et al.  Theory of quantum error-correcting codes , 1997 .

[40]  Paweł Mazurek,et al.  Simple scheme for encoding and decoding a qubit in unknown state for various topological codes , 2014, Scientific Reports.

[41]  Todd A. Brun,et al.  Quantum Error Correction , 2019, Oxford Research Encyclopedia of Physics.

[42]  Dorit Aharonov,et al.  Fault-tolerant Quantum Computation with Constant Error Rate * , 1999 .

[43]  Omar Fawzi,et al.  Constant Overhead Quantum Fault-Tolerance with Quantum Expander Codes , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[44]  Lajos Hanzo,et al.  Quantum Topological Error Correction Codes: The Classical-to-Quantum Isomorphism Perspective , 2018, IEEE Access.

[45]  A. Kitaev,et al.  Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.

[46]  Peter W. Shor,et al.  Fault-tolerant quantum computation , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[47]  M. A. Martin-Delgado,et al.  Quantum measurements and gates by code deformation , 2007, 0704.2540.

[48]  W. Munro,et al.  Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.

[49]  Gerhard Grössing,et al.  Quantum Cellular Automata , 1988, Complex Syst..

[50]  B. Terhal,et al.  Tradeoffs for reliable quantum information storage in 2D systems , 2009, Quantum Cryptography and Computing.

[51]  H. Bombin,et al.  Topological quantum distillation. , 2006, Physical review letters.

[52]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[53]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[54]  D. D. Awschalom,et al.  Decoherence-protected quantum gates for a hybrid solid-state spin register , 2012, Nature.

[55]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[56]  A. Steane Overhead and noise threshold of fault-tolerant quantum error correction , 2002, quant-ph/0207119.

[57]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[58]  J. P. Dehollain,et al.  An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.

[59]  J. Gambetta,et al.  Universal quantum gate set approaching fault-tolerant thresholds with superconducting qubits. , 2012, Physical review letters.

[60]  E. Knill,et al.  Resilient Quantum Computation , 1998 .

[61]  H. Bombin,et al.  Single-Shot Fault-Tolerant Quantum Error Correction , 2014, 1404.5504.

[62]  N. Linke,et al.  High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits. , 2015, Physical review letters.

[63]  E. Knill,et al.  Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[64]  Yuichiro Fujiwara,et al.  Ability of stabilizer quantum error correction to protect itself from its own imperfection , 2014, ArXiv.

[65]  B. Terhal,et al.  A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes , 2008, 0810.1983.

[66]  Schumacher,et al.  Quantum coding. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[67]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[68]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[69]  A. Steane Space, Time, Parallelism and Noise Requirements for Reliable Quantum Computing , 1997, quant-ph/9708021.

[70]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[71]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[72]  David J. C. MacKay,et al.  Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.

[73]  Lajos Hanzo,et al.  EXIT-Chart Aided Quantum Code Design Improves the Normalised Throughput of Realistic Quantum Devices , 2016, IEEE Access.

[74]  Alexei Ashikhmin,et al.  Quantum Data-Syndrome Codes , 2019, IEEE Journal on Selected Areas in Communications.

[75]  Joseph M. Renes,et al.  Quantum polar codes for arbitrary channels , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[76]  Alexei E. Ashikhmin,et al.  Correction of data and syndrome errors by stabilizer codes , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[77]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[78]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[79]  Earl T. Campbell,et al.  A theory of single-shot error correction for adversarial noise , 2018, Quantum Science and Technology.

[80]  M. Freedman,et al.  Topological Quantum Computation , 2001, quant-ph/0101025.

[81]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.