Trust region methods for solving the optimal output feedback design problem

We consider the problem of designing feedback control laws when a complete set of state variables is not available. For linear autonomous control systems with quadratic performance criterion, the design problem consists of choosing an appropriate static output feedback (SOF) gain matrix according to a certain objective function. The corresponding non-linear matrix optimization problem can be interpreted as an equality constrained minimization problem. For solving this problem, we propose a constrained trust region (CTR) algorithm, which presents a new and efficient numerical approach for this problem class. On the other hand, based on the formulation used in the past, the SOF problem can be also interpreted as an unconstrained programming problem. Thus, based on this interpretation, we also develop an unconstrained trust region (UTR) method. Finally, several numerical examples for optimal SOF problems demonstrate the applicability of the considered algorithm.

[1]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[2]  Mario A. Rotea,et al.  The generalized H2 control problem , 1993, Autom..

[3]  M. El-Alem A global convergence theory for the Celis-Dennis-Tapia trust-region algorithm for constrained optimization , 1991 .

[4]  Friedemann Leibfritz Static output feedback design problems , 1998 .

[5]  Jose C. Geromel,et al.  Synthesis of Positive Real 7iz Controllers , 1996 .

[6]  B. Anderson,et al.  Linear Optimal Control , 1971 .

[7]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[8]  Hannu T. Toivonen,et al.  Newton's method for solving parametric linear quadratic control problems , 1987 .

[9]  Nicholas I. M. Gould,et al.  A primal-dual trust-region algorithm for non-convex nonlinear programming , 2000, Math. Program..

[10]  L. N. Vicente,et al.  Trust-Region Interior-Point SQP Algorithms for a Class of Nonlinear Programming Problems , 1998 .

[11]  J. Burns,et al.  A Reduced Basis Approach to the Design of Low-Order Feedback Controllers for Nonlinear Continuous Systems , 1998 .

[12]  T. Steihaug The Conjugate Gradient Method and Trust Regions in Large Scale Optimization , 1983 .

[13]  Friedemann Leibfritz Computational Design of Stabilizing Static Output Feedback Controllers , 1999, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[14]  R. Skelton,et al.  A complete solution to the general H∞ control problem: LMI existence conditions and state space formulas , 1993, 1993 American Control Conference.

[15]  Jianzhon Zhang,et al.  A trust region typed dogleg method for nonlinear optimization , 1990 .

[16]  P. Makila,et al.  Computational methods for parametric LQ problems--A survey , 1987 .

[17]  L. Ghaoui,et al.  A cone complementarity linearization algorithm for static output-feedback and related problems , 1997, IEEE Trans. Autom. Control..

[18]  J. Geromel,et al.  Convex analysis of output feedback control problems: robust stability and performance , 1996, IEEE Trans. Autom. Control..

[19]  Tetsuya Iwasaki,et al.  All controllers for the general H∞ control problem: LMI existence conditions and state space formulas , 1994, Autom..

[20]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[21]  Jorge Nocedal,et al.  A trust region method based on interior point techniques for nonlinear programming , 2000, Math. Program..

[22]  D. Bernstein,et al.  LQG control with an H/sup infinity / performance bound: a Riccati equation approach , 1989 .

[23]  R. Skelton,et al.  Parametrization of all stabilizing controllers via quadratic Lyapunov functions , 1995 .

[24]  H. Sirisena,et al.  Computation of optimal output feedback gains for linear multivariable systems , 1974 .

[25]  N. I. M. Gould,et al.  A Primal-Dual Trust-Region Algorithmfor Minimizing a Non-convex FunctionSubject to General Inequalityand Linear Equality , 1999 .

[26]  Mahmoud El-Alem,et al.  A Robust Trust-Region Algorithm with a Nonmonotonic Penalty Parameter Scheme for Constrained Optimization , 1995, SIAM J. Optim..

[27]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[28]  Vladimir A. Yakubovich,et al.  Linear Matrix Inequalities in System and Control Theory (S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan) , 1995, SIAM Rev..

[29]  José Claudio Geromel,et al.  Synthesis of positive real H2 controllers , 1997, IEEE Trans. Autom. Control..

[30]  John E. Dennis,et al.  A Global Convergence Theory for General Trust-Region-Based Algorithms for Equality Constrained Optimization , 1997, SIAM J. Optim..

[31]  W. Haddad,et al.  LQG control with an H∞ performance bound: a riccati equation approach , 1988, 1988 American Control Conference.

[32]  P. Gahinet,et al.  A linear matrix inequality approach to H∞ control , 1994 .

[33]  M. Rotea The Generalized H_2 Control Problem , 1991 .

[34]  Ekkehard W. Sachs,et al.  Computational Design of Optimal Output Feedback Controllers , 1997, SIAM J. Optim..

[35]  M. Athans,et al.  On the determination of the optimal constant output feedback gains for linear multivariable systems , 1970 .

[36]  P. Khargonekar,et al.  Mixed H/sub 2//H/sub infinity / control: a convex optimization approach , 1991 .

[37]  P. Gahinet,et al.  H∞ design with pole placement constraints: an LMI approach , 1996, IEEE Trans. Autom. Control..

[38]  Friedemann Leibfritz,et al.  An LMI-Based Algorithm for Designing Suboptimal Static H2/Hinfinity Output Feedback Controllers , 2000, SIAM J. Control. Optim..

[39]  H. Toivonen A globally convergent algorithm for the optimal constant output feedback problem , 1985 .

[40]  Y. Hung,et al.  Multivariable Feedback: A Quasi-Classical Approach , 1982 .