Algebraic decoding of the (73, 37, 13) quadratic residue code
暂无分享,去创建一个
[1] Trieu-Kien Truong,et al. Decoding the (73, 37, 13) quadratic residue code , 1994 .
[2] F. MacWilliams,et al. The Theory of Error-Correcting Codes , 1977 .
[3] S. Wicker. Error Control Systems for Digital Communication and Storage , 1994 .
[4] Tsung-Ching Lin,et al. High speed decoding of the binary (47, 24, 11) quadratic residue code , 2010, Inf. Sci..
[5] Robert T. Chien,et al. Cyclic decoding procedures for Bose- Chaudhuri-Hocquenghem codes , 1964, IEEE Trans. Inf. Theory.
[6] Trieu-Kien Truong,et al. Algebraic decoding of the (32, 16, 8) quadratic residue code , 1990, IEEE Trans. Inf. Theory.
[7] Trieu-Kien Truong,et al. VLSI Architectures for Computing Multiplications and Inverses in GF(2m) , 1983, IEEE Transactions on Computers.
[8] Hsin-Chiu Chang,et al. An Efficient Decoding Algorithm for the (73, 37, 13) Quadratic Residue Code , 2011 .
[9] Xuemin Chen,et al. The algebraic decoding of the (41, 21, 9) quadratic residue code , 1992, IEEE Trans. Inf. Theory.
[10] Chong-Dao Lee,et al. Algebraic decoding of (71, 36, 11), (79, 40, 15), and (97, 49, 15) quadratic residue codes , 2003, IEEE Trans. Commun..
[11] Trieu-Kien Truong,et al. Decoding the (24,12,8) Golay code , 1990 .
[12] Xuemin Chen,et al. Decoding the (47, 24, 11) quadratic residue code , 2001, IEEE Trans. Inf. Theory.
[13] Tsung-Ching Lin,et al. On the decoding of the (24, 12, 8) Golay code , 2010, Inf. Sci..
[14] Tsung-Ching Lin,et al. Decoding of the (31, 16, 7) quadratic residue code , 2010 .
[15] Tor Helleseth,et al. Use of Grobner bases to decode binary cyclic codes up to the true minimum distance , 1994, IEEE Trans. Inf. Theory.
[16] Michele Elia,et al. Algebraic decoding of the (23, 12, 7) Golay code , 1987, IEEE Trans. Inf. Theory.
[17] Chien-Hsiang Huang,et al. A Lookup Table Decoding of systematic (47, 24, 11) quadratic residue code , 2009, Inf. Sci..
[18] Yan-Haw Chen,et al. Fast algorithm for decoding of systematic quadratic residue codes , 2011, IET Commun..
[19] Chong-Dao Lee,et al. Algebraic decoding of (103, 52, 19) and (113, 57, 15) quadratic residue codes , 2005, IEEE Transactions on Communications.