On the application of an optimal spline sampling theorem

Abstract In this article, linear combinations of B-splines are presented which are a suitable substitute of the sinc-function in the classical sampling theorem. The advantage is that in practical applications no truncation error occurs; further, the number of samples needed is extremely small, and the signal need to be assumed to be bandlimited. Finally, this method is illustrated graphically and numerically for some testfunctions.

[1]  R. L. Stens,et al.  Prediction of Non-Bandlimited Signals from Past Samples in Terms of Splines of Low Degree† , 1987 .

[2]  P. L. Butzer,et al.  On the implementation of the Shannon sampling series for band-limited signals , 1983, IEEE Trans. Inf. Theory.

[3]  D. Jagerman,et al.  Bounds for Truncation Error of the Sampling Expansion , 1966 .

[4]  Robert A. Schowengerdt,et al.  Image reconstruction by parametric cubic convolution , 1982, Comput. Graph. Image Process..

[5]  Paul L. Butzer,et al.  Approximation of continuous and discontinuous functions by generalized sampling series , 1987 .

[6]  R. Keys Cubic convolution interpolation for digital image processing , 1981 .

[7]  Ursula Scheben,et al.  Magnitude of the truncation error in sampling expansions of band-limited signals , 1982 .

[8]  R. G. Medhurst,et al.  Evaluation of the integral _{}()=2\over∫^{∞}₀(sin\over)ⁿcos(). , 1965 .

[9]  R. G. Medhurst,et al.  Evaluation of the Integral I n (b) = 2 π ∞ 0 sinx x n cos(bx) dx , 1965 .

[10]  E. Stark A Bibliography on the Approximation of Functions by Operators of Class S2m or Sm Involving Kernels of Finite Oscillations , 1978 .

[11]  R. L. Stens,et al.  The Shannon sampling series and the reconstruction of signals in terms of linear, quadratic and cubic splines , 1986 .

[12]  J. R. Higgins,et al.  Five short stories about the cardinal series , 1985 .

[13]  H. E. Fettis More on the calculation of the integral _{}()=(2/)∫₀^{∞}(\frac{sin})ⁿcos , 1967 .

[14]  D. Bierens de . Haan,et al.  Nouvelles tables d'intégrales définies , 1939 .

[15]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[16]  Edward Neuman,et al.  Moments and Fourier transforms of B-splines , 1981 .

[17]  C. D. Boor,et al.  Splines as linear combinations of B-splines. A Survey , 1976 .

[18]  Optimal kernels for a general sampling theorem , 1987 .

[19]  Sigmar Ries Spline Convolution for Digital Image Processing , 1986, Other Conferences.

[20]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[21]  I. J. Schoenberg Cardinal Spline Interpolation , 1987 .

[22]  R. Thompson Evaluation of I n (b) = 2π -1 ∞ 0 sin x x n cos(bx) dx and of Similar Integrals , 1966 .

[23]  R. Thompson Evaluation of _{}()=2⁻¹∫₀^{∞}(/)ⁿ() and of similar integrals , 1966 .