A stationary Fleming–Viot type Brownian particle system
暂无分享,去创建一个
[1] Peter March,et al. A Fleming–Viot Particle Representation¶of the Dirichlet Laplacian , 2000 .
[2] L. A. Li︠u︡sternik,et al. Elements of Functional Analysis , 1962 .
[3] I. Grigorescu,et al. Tagged Particle Limit for a Fleming-Viot Type System , 2006 .
[4] S. Ethier,et al. Markov Processes: Characterization and Convergence , 2005 .
[5] Kai Lai Chung,et al. From Brownian Motion To Schrödinger's Equation , 1995 .
[6] Donald A. Dawson,et al. Measure-valued Markov processes , 1993 .
[7] Robert Holyst,et al. Configurational transition in a Fleming - Viot-type model and probabilistic interpretation of Laplacian eigenfunctions , 1996 .
[8] R. Pinsky,et al. Spectral analysis of a family of second-order elliptic operators with nonlocal boundary condition indexed by a probability measure , 2007, 0707.0612.
[9] K. Bogdan. Sharp Estimates for the Green Function in Lipschitz Domains , 2000 .
[10] S. Levy,et al. Elements of functional analysis , 1970 .
[11] I. Grigorescu,et al. Hydrodynamic limit for a Fleming-Viot type system , 2004 .
[12] E. Davies. Properties of the Green's Functions of Some Schrödinger Operators , 1974 .
[13] M. Berg. On the spectral counting function for the Dirichlet Laplacian , 1992 .
[14] D. Aldous. Review: Stewart N. Ethier and Thomas G. Kurtz, Markov processes: Characterization and convergence , 1987 .
[15] Iddo Ben-Ari,et al. Ergodic behavior of diffusions with random jumps from the boundary , 2009 .
[16] O. Kallenberg. Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.
[17] D. Stoyan,et al. Stochastic Geometry and Its Applications , 1989 .
[18] E. Bolthausen,et al. Estimates for Dirichlet Eigenfunctions , 1999 .