Unconditionally optimal convergence of an energy-conserving and linearly implicit scheme for nonlinear wave equations

In this paper, we present and analyze an energy-conserving and linearly implicit scheme for solving the nonlinear wave equations. Optimal error estimates in time and superconvergent error estimates in space are established without time-step dependent on the spatial mesh size. The key is to estimate directly the solution bounds in the H-norm for both the nonlinear wave equation and the corresponding fully discrete scheme, while the previous investigations rely on the temporal-spatial error splitting approach. Numerical examples are presented to confirm energy-conserving properties, unconditional convergence, and optimal error estimates, respectively, of the proposed fully discrete schemes.

[1]  Anjan Biswas,et al.  Soliton perturbation theory for phi-four model and nonlinear Klein–Gordon equations , 2009 .

[2]  Buyang Li,et al.  Energy-Decaying Extrapolated RK-SAV Methods for the Allen-Cahn and Cahn-Hilliard Equations , 2019, SIAM J. Sci. Comput..

[3]  Dongfang Li,et al.  Linearly Implicit and High-Order Energy-Conserving Schemes for Nonlinear Wave Equations , 2020, J. Sci. Comput..

[4]  Luigi Brugnano,et al.  Energy conservation issues in the numerical solution of the semilinear wave equation , 2014, Appl. Math. Comput..

[5]  Abdul-Majid Wazwaz,et al.  New travelling wave solutions to the Boussinesq and the Klein–Gordon equations , 2008 .

[6]  Bin Wang,et al.  Efficient energy-preserving integrators for oscillatory Hamiltonian systems , 2013, J. Comput. Phys..

[7]  Zhimin Zhang,et al.  Optimal Superconvergence of Energy Conserving Local Discontinuous Galerkin Methods for Wave Equations , 2017 .

[8]  Jiwei Zhang,et al.  Unconditionally Convergent L1-Galerkin FEMs for Nonlinear Time-Fractional Schrödinger Equations , 2017, SIAM J. Sci. Comput..

[9]  R. Bellman The stability of solutions of linear differential equations , 1943 .

[10]  Weiwei Sun,et al.  Unconditionally Optimal Error Estimates of a Crank-Nicolson Galerkin Method for the Nonlinear Thermistor Equations , 2012, SIAM J. Numer. Anal..

[11]  Weiwei Sun,et al.  Unconditional Convergence and Optimal Error Estimates of a Galerkin-Mixed FEM for Incompressible Miscible Flow in Porous Media , 2012, SIAM J. Numer. Anal..

[12]  Volker Grimm,et al.  A note on the Gautschi-type method for oscillatory second-order differential equations , 2005, Numerische Mathematik.

[13]  Jie Shen,et al.  Convergence and Error Analysis for the Scalar Auxiliary Variable (SAV) Schemes to Gradient Flows , 2018, SIAM J. Numer. Anal..

[14]  B. Cano,et al.  Multistep cosine methods for second-order partial differential systems , 2010 .

[15]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[16]  Zhimin Zhang,et al.  Linearized Galerkin FEMs for Nonlinear Time Fractional Parabolic Problems with Non-smooth Solutions in Time Direction , 2019, J. Sci. Comput..

[17]  Jiang Yang,et al.  The scalar auxiliary variable (SAV) approach for gradient flows , 2018, J. Comput. Phys..

[18]  Ludwig Gauckler,et al.  Error Analysis of Trigonometric Integrators for Semilinear Wave Equations , 2014, SIAM J. Numer. Anal..

[19]  István Faragó,et al.  Finite element method for solving nonlinear parabolic equations , 1991 .

[20]  Y. Lin,et al.  Non-classicalH1 projection and Galerkin methods for non-linear parabolic integro-differential equations , 1988 .

[21]  P. Drazin,et al.  Solitons: An Introduction , 1989 .

[22]  Jr. H. H. Rachford Two-Level Discrete-Time Galerkin Approximations for Second Order Nonlinear Parabolic Partial Differential Equations , 1973 .

[23]  Galerkin's method for some highly nonlinear problems , 1977 .

[24]  Carsten Carstensen,et al.  Time-Space Discretization of the Nonlinear Hyperbolic System utt = div (\sigma(Du)+ Dut) , 2004, SIAM J. Numer. Anal..

[25]  Mitchell Luskin,et al.  A Galerkin Method for Nonlinear Parabolic Equations with Nonlinear Boundary Conditions , 1979 .

[26]  Xinyuan Wu,et al.  The formulation and analysis of energy-preserving schemes for solving high-dimensional nonlinear Klein–Gordon equations , 2018, IMA Journal of Numerical Analysis.

[27]  Jie Shen,et al.  A New Class of Efficient and Robust Energy Stable Schemes for Gradient Flows , 2017, SIAM Rev..

[28]  Jie Shen,et al.  Two classes of linearly implicit local energy-preserving approach for general multi-symplectic Hamiltonian PDEs , 2020, J. Comput. Phys..

[29]  Buyang Li,et al.  Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations , 2012, 1208.4698.

[30]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .

[31]  Yongzhong Song,et al.  Structure-preserving algorithms for the two-dimensional sine-Gordon equation with Neumann boundary conditions , 2018, J. Comput. Phys..

[32]  Mohamed A. Helal,et al.  Solitons, Introduction to , 2009, Encyclopedia of Complexity and Systems Science.

[33]  Jinming Wen,et al.  Mass- and energy-conserving difference schemes for nonlinear fractional Schrödinger equations , 2021, Appl. Math. Lett..