Sequential Monte Carlo for fractional stochastic volatility models

In this paper, we consider a fractional stochastic volatility model, that is a model in which the volatility may exhibit a long-range dependent or a rough/antipersistent behaviour. We propose a dynamic sequential Monte Carlo methodology that is applicable to both long memory and antipersistent processes in order to estimate the volatility as well as the unknown parameters of the model. We establish a central limit theorem for the state and parameter filters and we study asymptotic properties (consistency and asymptotic normality) for the filter. We illustrate our results with a simulation study and we apply our method to estimate the volatility and the parameters of a long-range dependent model for S& P 500 data.

[1]  Josselin Garnier,et al.  Correction to Black-Scholes Formula Due to Fractional Stochastic Volatility , 2015, SIAM J. Financial Math..

[2]  Jim Gatheral,et al.  Pricing under rough volatility , 2015 .

[3]  M. Rosenbaum,et al.  Volatility is rough , 2014, 1410.3394.

[4]  N. Pillai,et al.  Statistical Inference for Stochastic Differential Equations with Memory , 2013, 1307.1164.

[5]  A. Beskos,et al.  Bayesian Inference for partially observed SDEs Driven by Fractional Brownian Motion , 2013, 1307.0238.

[6]  F. Comte,et al.  Affine fractional stochastic volatility models , 2012 .

[7]  F. Viens,et al.  Estimation and pricing under long-memory stochastic volatility , 2012 .

[8]  Frederi G. Viens,et al.  Stochastic volatility and option pricing with long-memory in discrete and continuous time , 2012 .

[9]  N. Shephard,et al.  BAYESIAN INFERENCE BASED ONLY ON SIMULATED LIKELIHOOD: PARTICLE FILTER ANALYSIS OF DYNAMIC ECONOMIC MODELS , 2011, Econometric Theory.

[10]  O. Papaspiliopoulos,et al.  SMC^2: A sequential Monte Carlo algorithm with particle Markov chain Monte Carlo updates , 2011 .

[11]  Nicolas Chopin,et al.  SMC2: an efficient algorithm for sequential analysis of state space models , 2011, 1101.1528.

[12]  Hong Zhang,et al.  Forecasting Volatility in Financial Markets , 2010 .

[13]  Arnaud Doucet,et al.  An overview of sequential Monte Carlo methods for parameter estimation in general state-space models , 2009 .

[14]  Simon J. Godsill,et al.  An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo , 2007, Proceedings of the IEEE.

[15]  A. Harvey Long memory in stochastic volatility , 2007 .

[16]  Christian Bender,et al.  Arbitrage with fractional Brownian motion , 2007 .

[17]  Jiti Gao,et al.  Econometric estimation in long-range dependent volatility models: Theory and practice , 2008 .

[18]  R. Douc,et al.  Limit theorems for weighted samples with applications to sequential Monte Carlo methods , 2005, math/0507042.

[19]  N. Chopin Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference , 2004, math/0508594.

[20]  P. Moral Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .

[21]  H. Kunsch Recursive Monte Carlo filters: Algorithms and theoretical analysis , 2006, math/0602211.

[22]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[23]  P. Moral,et al.  On the stability of interacting processes with applications to filtering and genetic algorithms , 2001 .

[24]  Michael A. West,et al.  Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.

[25]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[26]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[27]  P. Moral,et al.  Central limit theorem for nonlinear filtering and interacting particle systems , 1999 .

[28]  F. Comte,et al.  Long memory in continuous‐time stochastic volatility models , 1998 .

[29]  F. Breidt,et al.  The detection and estimation of long memory in stochastic volatility , 1998 .

[30]  A. V. D. Vaart,et al.  Asymptotic Statistics: Frontmatter , 1998 .

[31]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[32]  R. Baillie,et al.  Fractionally integrated generalized autoregressive conditional heteroskedasticity , 1996 .

[33]  James D. Hamilton Time Series Analysis , 1994 .

[34]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[35]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[36]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[37]  M. West Approximating posterior distributions by mixtures , 1993 .

[38]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[39]  Michael D. Geurts,et al.  Time Series Analysis: Forecasting and Control , 1977 .

[40]  J. E. Handschin Monte Carlo techniques for prediction and filtering of non-linear stochastic processes , 1970 .

[41]  D. Mayne,et al.  Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering† , 1969 .