Low Noise and Low Offset Operational and Instrumentation Amplifiers

This chapter gives an overview of techniques that achieve low offset, low noise, and high accuracy in CMOS operational amplifiers (OA or OpAmp) and instrumentation amplifiers (IA or InstAmp). Auto-zero and chopper techniques are used apart and in combination with each other. Frequency-compensation techniques are described that obtain straight roll-off amplitude characteristics in the multi-path architectures of chopper-stabilized amplifiers. Therefore, these amplifiers can be used in standard feedback networks. Offset voltages lower than 1 μV can be achieved. Instrumentation amplifiers with capacitive coupled chopper inputs are described. They facilitate CM input voltage ranges outside the supply voltages for applications of beyond the rail current sensing.

[1]  Johan H. Huijsing,et al.  Indirect Current Feedback Instrumentation Amplifier with a Common Mode Input Range That Includes the Negative Rail , 1992, ESSCIRC '92: Eighteenth European Solid-State Circuits conference.

[2]  Gabor C. Temes,et al.  Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization , 1996, Proc. IEEE.

[3]  A. Bakker,et al.  A CMOS nested-chopper instrumentation amplifier with 100-nV offset , 2000, IEEE Journal of Solid-State Circuits.

[4]  E. Vittoz,et al.  A CMOS Chopper Amplifier , 1986, ESSCIRC '86: Twelfth European Solid-State Circuits Conference.

[5]  J.H. Huijsing,et al.  A CMOS Chopper Offset-Stabilized Opamp , 2006, 2006 Proceedings of the 32nd European Solid-State Circuits Conference.

[6]  Johan H. Huijsing,et al.  Operational Amplifiers - Theory and Design , 2000 .

[7]  Kofi A. A. Makinwa,et al.  A 21nV/√Hz chopper-stabilized multipath current-feedback instrumentation amplifier with 2µV offset , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[8]  A.-T. Avestruz,et al.  A 2 $\mu\hbox{W}$ 100 nV/rtHz Chopper-Stabilized Instrumentation Amplifier for Chronic Measurement of Neural Field Potentials , 2007, IEEE Journal of Solid-State Circuits.

[9]  Kofi A. A. Makinwa,et al.  Dynamic Offset Compensated CMOS Amplifiers , 2009 .

[10]  Kofi A. A. Makinwa,et al.  A Current-Feedback Instrumentation Amplifier with 5μV Offset for Bidirectional High-Side Current-Sensing , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[11]  I. E. Opris,et al.  A rail-to-rail ping-pong op-amp , 1996, IEEE J. Solid State Circuits.

[12]  R. Burt,et al.  A Micropower Chopper-Stabilized Operational Amplifier using a SC Notch Filter with Synchronous Integration inside the ContinuousTime Signal Path , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[13]  J.H. Huijsing,et al.  A Chopper Current-Feedback Instrumentation Amplifier With a 1 mHz $1/f$ Noise Corner and an AC-Coupled Ripple Reduction Loop , 2009, IEEE Journal of Solid-State Circuits.

[14]  R. Burt,et al.  A Micropower Chopper-Stabilized Operational Amplifier Using a SC Notch Filter With Synchronous Integration Inside the Continuous-Time Signal Path , 2006, IEEE Journal of Solid-State Circuits.

[15]  Johan H. Huijsing Dynamic Offset Cancellation in Operational Amplifiers and Instrumentation Amplifiers , 2009 .

[16]  Kofi A. A. Makinwa,et al.  A capacitively coupled chopper instrumentation amplifier with a ±30V common-mode range, 160dB CMRR and 5μV offset , 2012, 2012 IEEE International Solid-State Circuits Conference.