Optical framed knots as information carriers

Modern beam shaping techniques have enabled the generation of optical fields displaying a wealth of structural features, which include three-dimensional topologies such as Möbius, ribbon strips and knots. However, unlike simpler types of structured light, the topological properties of these optical fields have hitherto remained more of a fundamental curiosity as opposed to a feature that can be applied in modern technologies. Due to their robustness against external perturbations, topological invariants in physical systems are increasingly being considered as a means to encode information. Hence, structured light with topological properties could potentially be used for such purposes. Here, we introduce the experimental realization of structures known as framed knots within optical polarization fields. We further develop a protocol in which the topological properties of framed knots are used in conjunction with prime factorization to encode information.

[1]  J. F. Nye,et al.  The wave structure of monochromatic electromagnetic radiation , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[2]  I. Bialynicki-Birula,et al.  Tying knots in light fields. , 2013, Physical review letters.

[3]  William T. M. Irvine,et al.  Creation and dynamics of knotted vortices , 2012, Nature Physics.

[4]  M. Lewenstein,et al.  Knotting fractional-order knots with the polarization state of light , 2018, Nature Photonics.

[5]  W. Irvine Linked and knotted beams of light, conservation of helicity and the flow of null electromagnetic fields , 2011, 1110.5408.

[6]  R. Boyd,et al.  High-dimensional intracity quantum cryptography with structured photons , 2016, 1612.05195.

[7]  G. Leuchs,et al.  Optical Polarization Möbius Strips and Points of Purely Transverse Spin Density. , 2016, Physical review letters.

[8]  Mark R. Dennis,et al.  Singular optics: optical vortices and polarization singularities , 2009 .

[9]  M. Freedman,et al.  Simulation of Topological Field Theories¶by Quantum Computers , 2000, quant-ph/0001071.

[10]  Miles J. Padgett,et al.  Observation of the vortex structure of a non-integer vortex beam , 2004 .

[11]  Mark R. Dennis,et al.  Isolated optical vortex knots , 2010 .

[12]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[13]  R. Boyd,et al.  Reconstructing the topology of optical polarization knots , 2018, Nature Physics.

[14]  Ebrahim Karimi,et al.  Exact solution to simultaneous intensity and phase encryption with a single phase-only hologram. , 2013, Optics letters.

[15]  M. Rasetti,et al.  Quantum geometry and quantum algorithms , 2006, quant-ph/0607203.

[16]  Robert Fickler,et al.  Twisted photons: new quantum perspectives in high dimensions , 2017, Light: Science & Applications.

[17]  L. Marrucci,et al.  Polarization pattern of vector vortex beams generated by q-plates with different topological charges. , 2012, Applied optics.

[18]  L. Marrucci,et al.  Multi-twist polarization ribbon topologies in highly-confined optical fields , 2019, New Journal of Physics.

[19]  Ebrahim Karimi,et al.  Observation of optical polarization Möbius strips , 2015, Science.

[20]  C. Adams Tales of Topology. (Book Reviews: The Knot Book. An Elementary Introduction to the Mathematical Theory of Knots.) , 1994 .

[21]  Mark R. Dennis,et al.  Vortex knots in tangled quantum eigenfunctions , 2016, Nature Communications.

[22]  Robert P. King,et al.  Knotted fields and explicit fibrations for lemniscate knots , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[24]  I. Hughes,et al.  Creating Complex Optical Longitudinal Polarization Structures. , 2018, Physical review letters.

[25]  Sergej Orlov,et al.  Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams , 2013, Nature Photonics.

[26]  Dirk Bouwmeester,et al.  Linked and knotted beams of light , 2008 .

[27]  I. Freund Optical Mobius Strips in Three Dimensional Ellipse Fields: Lines of Circular Polarization , 2009, 0903.2927.

[28]  Avinatan Hassidim,et al.  Quantum money from knots , 2010, ITCS '12.

[29]  M. Berry,et al.  Dislocations in wave trains , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[30]  Mark R. Dennis,et al.  Knotted and tangled threads of darkness in light beams , 2011 .

[31]  M. Berry,et al.  Knotted and linked phase singularities in monochromatic waves , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[32]  Mark R. Dennis,et al.  Singular knot bundle in light. , 2018, Journal of the Optical Society of America. A, Optics, image science, and vision.

[33]  Mark R. Dennis,et al.  Polarization singularities in 2D and 3D speckle fields. , 2008, Physical review letters.

[34]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[35]  Halina Rubinsztein-Dunlop,et al.  Roadmap on structured light , 2016 .

[36]  M J Padgett,et al.  Entangled optical vortex links. , 2011, Physical review letters.

[37]  R. P. King,et al.  Paraxial and nonparaxial polynomial beams and the analytic approach to propagation. , 2011, Optics letters.

[38]  M. Freedman,et al.  Topological Quantum Computation , 2001, quant-ph/0101025.

[39]  Avinatan Hassidim,et al.  Quantum money , 2012, CACM.

[40]  Mark R. Dennis,et al.  Singular optics and topological photonics , 2016 .

[41]  Isaac Freund,et al.  Multitwist optical Möbius strips. , 2009, Optics letters.

[42]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[43]  A. Rañada,et al.  Two properties of electromagnetic knots , 1997 .