Preconditioning complex symmetric linear systems
暂无分享,去创建一个
[1] Richard F. Barrett,et al. Matrix Market: a web resource for test matrix collections , 1996, Quality of Numerical Software.
[2] Alston S. Householder,et al. The Theory of Matrices in Numerical Analysis , 1964 .
[3] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[4] R. P. Kendall,et al. An Approximate Factorization Procedure for Solving Self-Adjoint Elliptic Difference Equations , 1968 .
[5] R.D. Falgout,et al. An Introduction to Algebraic Multigrid Computing , 2006, Computing in Science & Engineering.
[6] T. Sogabe,et al. A COCR method for solving complex symmetric linear systems , 2007 .
[7] Jennifer A. Scott,et al. On Positive Semidefinite Modification Schemes for Incomplete Cholesky Factorization , 2014, SIAM J. Sci. Comput..
[8] Artem Napov,et al. An Algebraic Multigrid Method with Guaranteed Convergence Rate , 2012, SIAM J. Sci. Comput..
[9] A. Cicone. A note on the Joint Spectral Radius , 2015, 1502.01506.
[10] C. Micchelli,et al. Polynomial Preconditioners for Conjugate Gradient Calculations , 1983 .
[11] S. Ashby. Minimax polynomial preconditioning for Hermitian linear systems , 1991 .
[12] A. Bunse-Gerstner,et al. On a conjugate gradient-type method for solving complex symmetric linear systems , 1999 .
[13] Amin Rafiei. Left-looking version of AINV preconditioner with complete pivoting strategy , 2014 .
[14] D. K. Salkuyeh,et al. A sparse-sparse iteration for computing a sparse incomplete factorization of the inverse of an SPD matrix , 2008, 0807.3644.
[15] R. Freund. On conjugate gradient type methods and polynomial preconditioners for a class of complex non-hermitian matrices , 1990 .
[16] Gerard L. G. Sleijpen,et al. BiCR variants of the hybrid BiCG methods for solving linear systems with nonsymmetric matrices , 2010, J. Comput. Appl. Math..
[17] Yousef Saad,et al. ILUM: A Multi-Elimination ILU Preconditioner for General Sparse Matrices , 1996, SIAM J. Sci. Comput..
[18] Gene H. Golub,et al. Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..
[19] Yong Zhang,et al. Lanczos-type variants of the COCR method for complex nonsymmetric linear systems , 2009, J. Comput. Phys..
[20] Owe Axelsson,et al. Iteration number for the conjugate gradient method , 2003, Math. Comput. Simul..
[21] Carlo Janna,et al. Adaptive Pattern Research for Block FSAI Preconditioning , 2011, SIAM J. Sci. Comput..
[22] Luca Bergamaschi,et al. Approximate inverse preconditioning in the parallel solution of sparse eigenproblems , 2000, Numer. Linear Algebra Appl..
[23] M. Benzi. Preconditioning techniques for large linear systems: a survey , 2002 .
[24] Michele Benzi,et al. A Sparse Approximate Inverse Preconditioner for the Conjugate Gradient Method , 1996, SIAM J. Sci. Comput..
[25] B. Fischer. Polynomial Based Iteration Methods for Symmetric Linear Systems , 1996 .
[26] J. Stoer,et al. Introduction to Numerical Analysis , 2002 .
[27] Timothy A. Davis,et al. The university of Florida sparse matrix collection , 2011, TOMS.
[28] H. V. D. Vorst,et al. A Petrov-Galerkin type method for solving Axk=b, where A is symmetric complex , 1990 .
[29] M. Sugihara,et al. An extension of the conjugate residual method to nonsymmetric linear systems , 2009 .
[30] Lorenzo Codecasa,et al. Base functions and discrete constitutive relations for staggered polyhedral grids , 2009 .
[31] J. Pasciak,et al. Computer solution of large sparse positive definite systems , 1982 .
[32] Rene F. Swarttouw,et al. Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.
[33] M. Ng,et al. Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..
[34] Fang Chen,et al. Modified HSS iteration methods for a class of complex symmetric linear systems , 2010, Computing.
[35] Y. Saad,et al. Practical Use of Polynomial Preconditionings for the Conjugate Gradient Method , 1985 .
[36] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[37] Thomas A. Manteuffel,et al. A Comparison of Adaptive Chebyshev and Least Squares Polynomial Preconditioning for Hermitian Positive Definite Linear Systems , 1992, SIAM J. Sci. Comput..
[38] J. Scott,et al. HSL_MI20: An efficient AMG preconditioner for finite element problems in 3D , 2010 .
[39] I. Duff,et al. Direct Methods for Sparse Matrices , 1987 .
[40] Owe Axelsson,et al. A survey of preconditioned iterative methods for linear systems of algebraic equations , 1985 .
[41] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[42] Anne Greenbaum,et al. Approximating the inverse of a matrix for use in iterative algorithms on vector processors , 1979, Computing.
[43] Chih-Jen Lin,et al. Incomplete Cholesky Factorizations with Limited Memory , 1999, SIAM J. Sci. Comput..
[44] S. Ashby. Polynomial Preconditioning for Conjugate Gradient Methods , 1988 .
[45] Roland W. Freund,et al. Conjugate Gradient-Type Methods for Linear Systems with Complex Symmetric Coefficient Matrices , 1992, SIAM J. Sci. Comput..
[46] Hassane Sadok,et al. CMRH: A new method for solving nonsymmetric linear systems based on the Hessenberg reduction algorithm , 1999, Numerical Algorithms.
[47] V. Kozyakin. On accuracy of approximation of the spectral radius by the Gelfand formula , 2008, 0810.2856.
[48] Edmond Chow,et al. Parallel Implementation and Practical Use of Sparse Approximate Inverse Preconditioners with a Priori Sparsity Patterns , 2001, Int. J. High Perform. Comput. Appl..
[49] Gerard L. G. Sleijpen,et al. Maintaining convergence properties of BiCGstab methods in finite precision arithmetic , 1995, Numerical Algorithms.
[50] Antonello Tamburrino,et al. Multi-frequency identification of defects in conducting media , 2008 .
[51] Fang Chen,et al. On preconditioned MHSS iteration methods for complex symmetric linear systems , 2011, Numerical Algorithms.
[52] Karin Schwab. The Joint Spectral Radius Theory And Applications , 2016 .
[54] Anshul Gupta,et al. Adaptive Techniques for Improving the Performance of Incomplete Factorization Preconditioning , 2010, SIAM J. Sci. Comput..
[55] Timothy A. Davis,et al. Direct Methods for Sparse Linear Systems (Fundamentals of Algorithms 2) , 2006 .
[56] D FalgoutRobert. An Introduction to Algebraic Multigrid , 2006 .
[57] D. R. Fokkema,et al. BICGSTAB( L ) FOR LINEAR EQUATIONS INVOLVING UNSYMMETRIC MATRICES WITH COMPLEX , 1993 .
[58] Ursula van Rienen,et al. Numerical Methods in Computational Electrodynamics - Linear Systems in Practical Applications , 2001, Lecture Notes in Computational Science and Engineering.
[59] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.