Methanonatronarchaeum thermophilum gen. nov., sp. nov. and 'Candidatus Methanohalarchaeum thermophilum', extremely halo(natrono)philic methyl-reducing methanogens from hypersaline lakes comprising a new euryarchaeal class Methanonatronarchaeia classis nov.

Methanogenic enrichments from hypersaline lakes at moderate thermophilic conditions have resulted in the cultivation of an unknown deep lineage of euryarchaeota related to the class Halobacteria. Eleven soda lake isolates and three salt lake enrichment cultures were methyl-reducing methanogens that utilize C1 methylated compounds as electron acceptors and H2 or formate as electron donors, but they were unable to grow on either substrates alone or to form methane from acetate. They are extreme halophiles, growing optimally at 4 M total Na+ and the first representatives of methanogens employing the 'salt-in' osmoprotective mechanism. The salt lake subgroup is neutrophilic, whereas the soda lake isolates are obligate alkaliphiles, with an optimum around pH 9.5. Both grow optimally at 50 °C. The genetic diversity inside the two subgroups is very low, indicating that the soda and salt lake clusters consist of a single genetic species each. The phylogenetic distance between the two subgroups is in the range of distant genera, whereas the distance to other euryarchaea is below 83 % identity of the 16S rRNA gene. These isolates and enriched methanogens, together with closely related environmental clones from hypersaline habitats (the SA1 group), form a novel class-level clade in the phylum Euryarchaeota. On the basis of distinct phenotypic and genetic properties, the soda lake isolates are classified into a new genus and species, Methanonatronarchaeum thermophilum, with the type strain AMET1T (DSM 28684T=NBRC 110805T=UNIQEM U982T), and the salt lake methanogens into a candidate genus and species 'Candidatus Methanohalarchaeum thermophilum'. These organisms are proposed to form novel family, order and class Methanonatronarchaeaceae fam. nov., Methanonatronarchaeales ord. nov. and Methanonatronarchaeia classis nov., within the phylum Euryarchaeota.

[1]  Robert Huber,et al.  Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine-seawater interface of the Shaban Deep, Red Sea. , 2002, Environmental microbiology.

[2]  A. Lysenko,et al.  Physiology of the alkaliphilic methanogen Z-7936, a new strain of Methanosalsus zhilinaeae isolated from lake Magadi , 1997 .

[3]  A. Kraegeloh,et al.  Novel insights into the role of potassium for osmoregulation in Halomonas elongata , 2002, Extremophiles.

[4]  A. Stams,et al.  Constraints on the Biological Source(s) of the Orphan Branched Tetraether Membrane Lipids , 2009 .

[5]  B. Dridi,et al.  Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. , 2012, International journal of systematic and evolutionary microbiology.

[6]  J. S. Sinninghe Damsté,et al.  Halanaeroarchaeum sulfurireducens gen. nov., sp. nov., the first obligately anaerobic sulfur-respiring haloarchaeon, isolated from a hypersaline lake. , 2016, International journal of systematic and evolutionary microbiology.

[7]  K. Freeman,et al.  Molecular characterization of core lipids from halophilic archaea grown under different salinity conditions , 2012 .

[8]  A. Brune,et al.  “Methanoplasmatales,” Thermoplasmatales-Related Archaea in Termite Guts and Other Environments, Are the Seventh Order of Methanogens , 2012, Applied and Environmental Microbiology.

[9]  Donovan H. Parks,et al.  Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics , 2015, Science.

[10]  R. Gunsalus,et al.  Biosynthetic pathways of the osmolytes N epsilon-acetyl-beta-lysine, beta-glutamine, and betaine in Methanohalophilus strain FDF1 suggested by nuclear magnetic resonance analyses , 1992, Journal of bacteriology.

[11]  W. F. Fricke,et al.  The Genome Sequence of Methanosphaera stadtmanae Reveals Why This Human Intestinal Archaeon Is Restricted to Methanol and H2 for Methane Formation and ATP Synthesis , 2006, Journal of bacteriology.

[12]  O. Gascuel,et al.  Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. , 2006, Systematic biology.

[13]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[14]  Frank Oliver Glöckner,et al.  Unveiling microbial life in the new deep-sea hypersaline Lake Thetis. Part II: a metagenomic study. , 2012, Environmental microbiology.

[15]  M. Stieglmeier,et al.  Intact Polar and Core Glycerol Dibiphytanyl Glycerol Tetraether Lipids of Group I.1a and I.1b Thaumarchaeota in Soil , 2012, Applied and Environmental Microbiology.

[16]  E. Koonin,et al.  Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis , 2017, Nature Microbiology.

[17]  G. Fox,et al.  Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen. , 1988, International journal of systematic bacteriology.

[18]  J. Paterek,et al.  Methanohalophilus mahii gen. nov., sp. nov., a Methylotrophic Halophilic Methanogen† , 1988 .

[19]  Donovan H. Parks,et al.  Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota , 2016, Nature Microbiology.

[20]  D. E. Robertson,et al.  Distribution of compatible solutes in the halophilic methanogenic archaebacteria , 1991, Journal of bacteriology.

[21]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[22]  J. Menaia Osmotics of halophilic methanogenic archaeobacteria , 1992 .

[23]  D. Sorokin,et al.  Methanogens and Methanogenesis in Hypersaline Environments , 2018, Biogenesis of Hydrocarbons.

[24]  M. V. van Loosdrecht,et al.  Methanosalsum natronophilum sp. nov., and Methanocalculus alkaliphilus sp. nov., haloalkaliphilic methanogens from hypersaline soda lakes. , 2015, International journal of systematic and evolutionary microbiology.

[25]  Wen-Tso Liu,et al.  Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen , 2016, The ISME Journal.

[26]  Olivier Gascuel,et al.  Improving the efficiency of SPR moves in phylogenetic tree search methods based on maximum likelihood , 2005, Bioinform..

[27]  J. Hackstein,et al.  Methanomicrococcus blatticola gen. nov., sp. nov., a methanol- and methylamine-reducing methanogen from the hindgut of the cockroach Periplaneta americana. , 2000, International journal of systematic and evolutionary microbiology.

[28]  S. Gribaldo,et al.  Genome Sequence of “Candidatus Methanomethylophilus alvus” Mx1201, a Methanogenic Archaeon from the Human Gut Belonging to a Seventh Order of Methanogens , 2012, Journal of bacteriology.

[29]  N. Youssef,et al.  Trehalose/2-sulfotrehalose biosynthesis and glycine-betaine uptake are widely spread mechanisms for osmoadaptation in the Halobacteriales , 2013, The ISME Journal.

[30]  S. Haruta,et al.  Candidatus Methanogranum caenicola: a Novel Methanogen from the Anaerobic Digested Sludge, and Proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a Methanogenic Lineage of the Class Thermoplasmata , 2013, Microbes and environments.

[31]  W. Whitman,et al.  Physiology and Biochemistry of the Methane-Producing Archaea , 2006 .

[32]  Erin A. Becker,et al.  Phylogenetically Driven Sequencing of Extremely Halophilic Archaea Reveals Strategies for Static and Dynamic Osmo-response , 2014, PLoS genetics.

[33]  R. Oremland,et al.  Methanogenesis in Big Soda Lake, Nevada: an Alkaline, Moderately Hypersaline Desert Lake , 1982, Applied and environmental microbiology.

[34]  S. Gribaldo,et al.  Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine , 2014, BMC Genomics.

[35]  Hailiang Dong,et al.  Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. , 2007, Environmental microbiology.