A Bayesian approach for parameter estimation and prediction using a computationally intensive model

Bayesian methods have been very successful in quantifying uncertainty in physics-based problems in parameter estimation and prediction. In these cases, physical measurements y are modeled as the best fit of a physics-based model $\eta(\theta)$ where $\theta$ denotes the uncertain, best input setting. Hence the statistical model is of the form $y = \eta(\theta) + \epsilon$, where $\epsilon$ accounts for measurement, and possibly other error sources. When non-linearity is present in $\eta(\cdot)$, the resulting posterior distribution for the unknown parameters in the Bayesian formulation is typically complex and non-standard, requiring computationally demanding computational approaches such as Markov chain Monte Carlo (MCMC) to produce multivariate draws from the posterior. While quite generally applicable, MCMC requires thousands, or even millions of evaluations of the physics model $\eta(\cdot)$. This is problematic if the model takes hours or days to evaluate. To overcome this computational bottleneck, we present an approach adapted from Bayesian model calibration. This approach combines output from an ensemble of computational model runs with physical measurements, within a statistical formulation, to carry out inference. A key component of this approach is a statistical response surface, or emulator, estimated from the ensemble of model runs. We demonstrate this approach with a case study in estimating parameters for a density functional theory (DFT) model, using experimental mass/binding energy measurements from a collection of atomic nuclei. We also demonstrate how this approach produces uncertainties in predictions for recent mass measurements obtained at Argonne National Laboratory (ANL).

[1]  David M. Steinberg,et al.  Modeling Data from Computer Experiments: An Empirical Comparison of Kriging with MARS and Projection Pursuit Regression , 2007 .

[2]  Faming Liang,et al.  Statistical and Computational Inverse Problems , 2006, Technometrics.

[3]  James O. Berger,et al.  Using Statistical and Computer Models to Quantify Volcanic Hazards , 2009, Technometrics.

[4]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[5]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[6]  H. Storch,et al.  Statistical Analysis in Climate Research , 2000 .

[7]  David Higdon,et al.  Cosmic Calibration , 2006 .

[8]  S. E. Ahmed,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 2008, Technometrics.

[9]  D. Higdon,et al.  Computer Model Calibration Using High-Dimensional Output , 2008 .

[10]  Rhodri Hayward,et al.  Screening , 2008, The Lancet.

[11]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[12]  A. OHagan,et al.  Bayesian analysis of computer code outputs: A tutorial , 2006, Reliab. Eng. Syst. Saf..

[13]  Thomas J. Santner,et al.  Design and analysis of computer experiments , 1998 .

[14]  J. Besag,et al.  Bayesian Computation and Stochastic Systems , 1995 .

[15]  J. Rougier Efficient Emulators for Multivariate Deterministic Functions , 2008 .

[16]  B. Sansó,et al.  Inferring climate system properties using a computer model , 2008 .

[17]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[18]  D. Lascar,et al.  First results from the CARIBU facility: mass measurements on the r-process path. , 2013, Physical review letters.

[19]  Kerrie Mengersen,et al.  [Bayesian Computation and Stochastic Systems]: Rejoinder , 1995 .

[20]  Sonja Kuhnt,et al.  Design and analysis of computer experiments , 2010 .

[21]  Dave Higdon,et al.  Combining Field Data and Computer Simulations for Calibration and Prediction , 2005, SIAM J. Sci. Comput..

[22]  Stefan M. Wild,et al.  Nuclear energy density optimization: Large deformations , 2011, 1111.4344.

[23]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[24]  Hans-Georg Müller,et al.  Functional Data Analysis , 2016 .

[25]  Stefan M. Wild,et al.  Error Analysis in Nuclear Density Functional Theory , 2014, 1406.4383.

[26]  Stefan M. Wild,et al.  Nuclear Energy Density Optimization , 2010, 1005.5145.

[27]  Henry P. Wynn,et al.  Screening, predicting, and computer experiments , 1992 .

[28]  A. O'Hagan,et al.  Probabilistic sensitivity analysis of complex models: a Bayesian approach , 2004 .

[29]  Boxin Tang Orthogonal Array-Based Latin Hypercubes , 1993 .

[30]  James O. Berger,et al.  A Framework for Validation of Computer Models , 2007, Technometrics.