Modified inertial algorithm for solving mixed equilibrium problems in Hadamard spaces

The main purpose of this paper is to introduce the concept of modified inertial algorithm in Hadamard spaces. We emphasize that, as far as we know, this is the first time that this concept is being considered in this setting. Under some weak assumptions, we prove that the modified inertial algorithm converges strongly to a common solution of a finite family of mixed equilibrium problems and fixed point problem of a nonexpansive mapping. We also give a primary numerical illustration in the framework of Hadamard spaces, to show the efficiency of the modified inertial term in our proposed algorithm.

[1]  Duong Viet Thong,et al.  New extragradient methods for solving variational inequality problems and fixed point problems , 2018, Journal of Fixed Point Theory and Applications.

[2]  K. O. Aremu,et al.  On Mixed Equilibrium Problems in Hadamard Spaces , 2019, Journal of Mathematics.

[3]  Tomonari Suzuki,et al.  Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces , 2005 .

[4]  M. Abbas,et al.  Proximal-type algorithms for split minimization problem in P-uniformly convex metric spaces , 2018, Numerical Algorithms.

[5]  M. Bacák Convex Analysis and Optimization in Hadamard Spaces , 2014 .

[6]  Wataru Takahashi,et al.  STRONG AND WEAK CONVERGENCE THEOREMS FOR EQUILIBRIUM PROBLEMS AND RELATIVELY NONEXPANSIVE MAPPINGS IN BANACH SPACES , 2009 .

[7]  H. Attouch,et al.  An Inertial Proximal Method for Maximal Monotone Operators via Discretization of a Nonlinear Oscillator with Damping , 2001 .

[8]  William A. Kirk,et al.  A concept of convergence in geodesic spaces , 2008 .

[9]  Hong-Kun Xu Iterative Algorithms for Nonlinear Operators , 2002 .

[10]  Alfredo N. Iusem,et al.  On certain conditions for the existence of solutions of equilibrium problems , 2008, Math. Program..

[11]  P. Chaipunya,et al.  Equilibrium Problems and Proximal Algorithms in Hadamard Spaces. , 2017, 1807.10900.

[12]  Itai Shafrir,et al.  Nonexpansive iterations in hyperbolic spaces , 1990 .

[13]  M. Bacák Old and new challenges in Hadamard spaces , 2018, Japanese Journal of Mathematics.

[14]  A. Phon-on,et al.  A note on fixed point sets in CAT(0) spaces , 2006 .

[15]  H. Khatibzadeh,et al.  Strong and $$\Delta $$Δ-Convergence to a Zero of a Monotone Operator in CAT(0) Spaces , 2017 .

[16]  G. Zamani Eskandani,et al.  On the zero point problem of monotone operators in Hadamard spaces , 2018, Numerical Algorithms.

[17]  C. Izuchukwu,et al.  Strong convergence theorem for monotone inclusion problem in CAT(0) spaces , 2018, Afrika Matematika.

[18]  Monica Bianchi,et al.  Generalized monotone bifunctions and equilibrium problems , 1996 .

[19]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[20]  C. C. Okeke,et al.  A strong convergence theorem for monotone inclusion and minimization problems in complete CAT(0) spaces , 2019, Optim. Methods Softw..

[21]  H. Dehghan,et al.  Metric projection and convergence theorems for nonexpansive mappings in Hadamard spaces , 2014, 1410.1137.

[22]  P. Cholamjiak,et al.  Modified Proximal Point Algorithms for Solving Constrained Minimization and Fixed Point Problems in Complete CAT(0) Spaces , 2018 .

[23]  Marleen de Bruijne,et al.  Toward a Theory of Statistical Tree-Shape Analysis , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  P. L. Combettes,et al.  Equilibrium programming in Hilbert spaces , 2005 .

[25]  M. Bacák The proximal point algorithm in metric spaces , 2012, 1206.7074.

[26]  B. Martinet Brève communication. Régularisation d'inéquations variationnelles par approximations successives , 1970 .

[27]  S. Reich,et al.  Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings , 1984 .

[28]  Jinfang Tang Viscosity Approximation Methods for a Family of Nonexpansive Mappings in CAT(0) Spaces , 2014 .

[29]  G. Marino,et al.  Equilibrium problems in Hadamard manifolds , 2012 .

[30]  Søren Hauberg,et al.  Means in spaces of tree-like shapes , 2011, 2011 International Conference on Computer Vision.

[31]  B. Choi,et al.  THE PROXIMAL POINT ALGORITHM IN UNIFORMLY CONVEX METRIC SPACES , 2016 .

[32]  Boris Polyak Some methods of speeding up the convergence of iteration methods , 1964 .

[33]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[34]  William A. Kirk,et al.  Fixed points of uniformly lipschitzian mappings , 2006 .

[35]  Suthep Suantai,et al.  On solving the minimization problem and the fixed-point problem for nonexpansive mappings in CAT(0) spaces , 2017, Optim. Methods Softw..

[36]  Laurentiu Leustean A quadratic rate of asymptotic regularity for CAT(0)-spaces , 2005 .

[37]  P. Cholamjiak,et al.  Self-adaptive algorithms with inertial effects for solving the split problem of the demicontractive operators , 2019, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[38]  Duong Viet Thong,et al.  A Novel Inertial Projection and Contraction Method for Solving Pseudomonotone Variational Inequality Problems , 2019, Acta Applicandae Mathematicae.

[39]  S. Dhompongsa,et al.  On -convergence theorems in CAT(0) spaces , 2008, Comput. Math. Appl..

[40]  Duong Viet Thong,et al.  Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problems , 2018, Numerical Algorithms.

[41]  Dimitri P. Bertsekas,et al.  Convex Analysis and Optimization , 2003 .

[42]  Jen-Chih Yao,et al.  Common Zero for a Finite Family of Monotone Mappings in Hadamard Spaces with Applications , 2018, Mediterranean Journal of Mathematics.

[43]  C. Izuchukwu,et al.  A viscosity iterative technique for equilibrium and fixed point problems in a Hadamard space , 2019, Applied General Topology.

[44]  Duong Viet Thong,et al.  Weak and strong convergence theorems for variational inequality problems , 2017, Numerical Algorithms.

[45]  I. D. Berg,et al.  Quasilinearization and curvature of Aleksandrov spaces , 2008 .

[46]  Y. Shehu,et al.  Iterative method with inertial for variational inequalities in Hilbert spaces , 2018, Calcolo.

[47]  C. Izuchukwu,et al.  Iterative algorithm for a family of monotone inclusion problems in cat(0) spaces , 2020, Quaestiones Mathematicae.