A frictionless contact problem for elastic–viscoplastic materials with normal compliance: Numerical analysis and computational experiments

Summary. In this paper we consider a frictionless contact problem between an elastic–viscoplastic body and an obstacle. The process is assumed to be quasistatic and the contact is modeled with normal compliance. We present a variational formulation of the problem and prove the existence and uniqueness of the weak solution, using strongly monotone operators arguments and Banach's fixed point theorem. We also study the numerical approach to the problem using spatially semi-discrete and fully discrete finite elements schemes with implicit and explicit discretization in time. We show the existence of the unique solution for each of the schemes and derive error estimates on the approximate solutions. Finally, we present some numerical results involving examples in one, two and three dimensions.

[1]  P. Panagiotopoulos Inequality problems in mechanics and applications , 1985 .

[2]  A. Klarbring,et al.  FRICTIONAL CONTACT PROBLEMS WITH NORMAL COMPLIANCE , 1988 .

[3]  Mircea Sofonea,et al.  Analysis and numerical approximation of an elastic frictional contact problem with normal compliance , 1999 .

[4]  Mircea Sofonea,et al.  NUMERICAL ANALYSIS OF A CONTACT PROBLEM IN RATE-TYPE VISCOPLASTICITY , 2001 .

[5]  Weimin Han,et al.  On the numerical approximation of a frictional contact problem with normal compliance , 1996 .

[6]  W. Han,et al.  Plasticity: Mathematical Theory and Numerical Analysis , 1999 .

[7]  J. T. Oden,et al.  Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws , 1987 .

[8]  Juan M. Viaño,et al.  Numerical solving of frictionless contact problems in perfectly plastic bodies , 1995 .

[9]  Ivan Hlaváček,et al.  Solution of Signorini's contact problem in the deformation theory of plasticity by secant modules method , 1983 .

[10]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[11]  Haim Brezis,et al.  Équations et inéquations non linéaires dans les espaces vectoriels en dualité , 1968 .

[12]  I. Hlavácek,et al.  Mathematical Theory of Elastic and Elasto Plastic Bodies: An Introduction , 1981 .

[13]  Mircea Sofonea,et al.  Quasistatic Viscoelastic Contact with Normal Compliance and Friction , 1998 .

[14]  Mircea Sofonea,et al.  ON FRICTIONLESS CONTACT BETWEEN TWO ELASTIC-VISCOPLASTIC BODIES , 1997 .

[15]  J. Lions,et al.  Inequalities in mechanics and physics , 1976 .

[16]  Margarita Burguera González Análisis numérico de una clase de problemas de contacto en plasticidad perfecta , 1991 .

[17]  Mircea Sofonea,et al.  Functional and numerical methods in viscoplasticity , 1993 .

[18]  L. Andersson,et al.  A quasistatic frictional problem with normal compliance , 1991 .

[19]  R. Glowinski Lectures on Numerical Methods for Non-Linear Variational Problems , 1981 .

[20]  Juan Manuel,et al.  Análisis de un método numérico con elementos finitos para problemas de contacto unilateral sin rozamiento en elasticidad , 1985 .

[21]  Mircea Sofonea On a contact problem for elastic-viscoplastic bodies , 1997 .

[22]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .