Quantum Algorithms Related to \textitHN -Transforms of Boolean Functions

\(\textit{HN}\)-transforms, which have been proposed as generalizations of Hadamard transforms, are constructed by tensoring Hadamard and nega-Hadamard kernels in any order. We show that all the \(2^n\) possible \(\textit{HN}\)-spectra of a Boolean function in n variables, each containing \(2^n\) elements (i.e., in total \(2^{2n}\) values in transformed domain) can be computed in \(O(2^{2n})\) time (more specific with little less than \(2^{2n+1}\) arithmetic operations). We propose a generalization of Deutsch-Jozsa algorithm, by employing \(\textit{HN}\)-transforms, which can be used to distinguish different classes of Boolean functions over and above what is possible by the traditional Deutsch-Jozsa algorithm.

[1]  Matthew G. Parker,et al.  Generalized Bent Criteria for Boolean Functions (I) , 2005, IEEE Transactions on Information Theory.

[2]  Pantelimon Stanica,et al.  Rotation symmetric Boolean functions - Count and cryptographic properties , 2003, Discret. Appl. Math..

[3]  Subhamoy Maitra,et al.  Deutsch-Jozsa Algorithm Revisited in the Domain of Cryptographically Significant Boolean Functions , 2004 .

[4]  Willi Meier,et al.  Fast Correlation Attacks on Stream Ciphers (Extended Abstract) , 1988, EUROCRYPT.

[5]  Mitsuru Matsui,et al.  Linear Cryptanalysis Method for DES Cipher , 1994, EUROCRYPT.

[6]  Sugata Gangopadhyay,et al.  Cryptographic Boolean functions with biased inputs , 2017, Cryptography and Communications.

[7]  Willi Meier,et al.  Cube Testers and Key Recovery Attacks on Reduced-Round MD6 and Trivium , 2009, FSE.

[8]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[9]  Nicholas J. Patterson,et al.  The covering radius of the (215, 16) Reed-Muller code is at least 16276 , 1983, IEEE Trans. Inf. Theory.

[10]  Thomas Siegenthaler,et al.  Decrypting a Class of Stream Ciphers Using Ciphertext Only , 1985, IEEE Transactions on Computers.

[11]  J. Dillon Elementary Hadamard Difference Sets , 1974 .

[12]  Matthew G. Parker,et al.  Spectral Orbits and Peak-to-Average Power Ratio of Boolean Functions with Respect to the {I, H, N}n Transform , 2004, SETA.

[13]  Sugata Gangopadhyay,et al.  A Note on Generalized Bent Criteria for Boolean Functions , 2013, IEEE Transactions on Information Theory.

[14]  Simon Litsyn,et al.  On the Distribution of Boolean Function Nonlinearity , 2008, SIAM J. Discret. Math..

[15]  Lars Eirik Danielsen,et al.  On Connections Between Graphs, Codes, Quantum States, and Boolean Functions , 2008 .

[16]  C. Riera,et al.  Spectral Properties of Boolean Functions, Graphs and Graph States , 2005 .

[17]  Sugata Gangopadhyay,et al.  Investigations on Bent and Negabent Functions via the Nega-Hadamard Transform , 2012, IEEE Transactions on Information Theory.

[18]  Lars R. Knudsen,et al.  Truncated and Higher Order Differentials , 1994, FSE.

[19]  Adi Shamir,et al.  Cube Attacks on Tweakable Black Box Polynomials , 2009, IACR Cryptol. ePrint Arch..

[20]  Tor Helleseth,et al.  On the covering radius of binary codes (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[21]  Matthew G. Parker,et al.  Negabent Functions in the Maiorana-McFarland Class , 2008, SETA.

[22]  Matthew G. Parker,et al.  On Boolean Functions Which Are Bent and Negabent , 2007, SSC.