On Approximate l1 Systems in Banach Spaces

Let X be a real Banach space and let (f(n)) be a positive nondecreasing sequence. We consider systems of unit vectors (x"i)^~"i"="1 in X which satisfy @?@?"i"@?"A+/-x"i@?>=|A|-f(|A|), for all finite A@?N and for all choices of signs. We identify the spaces which contain such systems for bounded (f(n)) and for all unbounded (f(n)). For arbitrary unbounded (f(n)), we give examples of systems for which [x"i] is H.I., and we exhibit systems in all isomorphs of @?"1 which are not equivalent to the unit vector basis of @?"1. We also prove that certain lacunary Haar systems in L"1 are quasi-greedy basic sequences.

[1]  Remarks about Schlumprecht space , 1998, math/9802129.

[2]  R. C. James,et al.  Uniformly Non-Square Banach Spaces , 1964 .

[3]  COMPLEXITY OF WEAKLY NULL SEQUENCES , 1992, math/9202204.

[4]  Przemysław Wojtaszczyk,et al.  Greedy Algorithm for General Biorthogonal Systems , 2000 .

[5]  T. Schlumprecht,et al.  Asymptotic properties of Banach spaces under renormings , 1997, math/9709217.

[6]  On the optimality of a theorem of Elton on ℓ1n subsystems , 2001 .

[7]  J. Elton Sign-embeddings of ⁿ₁ , 1983 .

[8]  T. Schlumprecht An arbitrarily distortable Banach space , 1991, math/9201225.

[9]  W. Szlenik Sur les suites faiblement convergentes dans l'espace L , 1965 .

[10]  W. T. Gowers,et al.  The unconditional basic sequence problem , 1992, math/9205204.

[11]  C. Bessaga,et al.  On bases and unconditional convergence of series in Banach spaces , 1958 .

[12]  B. Bollobás Combinatorics: Set Systems, Hypergraphs, Families of Vectors and Combinatorial Probability , 1986 .

[13]  T. Schlumprecht,et al.  A problem on spreading models , 1996, math/9607207.

[14]  S. Argyros,et al.  Examples of asymptotic ℓ₁ Banach spaces , 1997 .

[15]  C. Lennard,et al.  Every nonreflexive subspace of ₁[0,1] fails the fixed point property , 1993, math/9302208.

[16]  Victor W. Marek,et al.  Book review: Combinatorics, Set Systems, Hypergraphs, Families of Vectors and Combinatorial Probability by B. Bollobas (Cambridge University Press) , 1987, SGAR.

[17]  M. Girardi,et al.  Dual Banach spaces which contain an isometric copy of $L_1$ , 2000, math/0004168.

[18]  J. Lapresté,et al.  Modèles étalés des espaces de Banach , 1983 .