Utilizing Knowledge: The Components of the SB-ONE Knowledge Representation Workbench

SB-ONE is a knowledge representation workbench specifically designed for the construction and exploitation of conceptual knowledge bases in natural language systems. At the heart of the system lies the SB-ONE language, which allows for the representation of conceptual knowledge and simple existential assertions. The kernel language has been extended by “metastructures,” which permit the description of objects in a represented domain both as individuals and as pairs of a relation. Knowledge can be assigned to partitions, which may themselves be ordered in inheritance hierarchies. The construction of SB-ONE knowledge bases is facilitated by functional, textual, and graphics-based interfaces; a consistency maintenance system for the syntactic well-formedness of SB-ONE knowledge bases; a classifier; and a realizer. Additional utilities operating on SB-ONE that are briefly described include a pattern matcher, a spreading-activation mechanism, an interpreter and classifier for SB-ONE to SB-ONE translation rules, an integration mechanism for an external frame-based representation, and a connection between SB-ONE and an extended PROLOG.

[1]  Rainer Hammwöhner,et al.  Graphische Kommunikations- und präsentationsformen für komplexe Wissens- und Textstrukturen: zur Konzeption eines graphischen Interface für ein wissensbesiertes Textkondensierungssystem , 1984, Kognitive Aspekte der Mensch-Computer-Interaktion.

[2]  Eric Mays,et al.  A persistent store for large shared knowledge bases , 1990, Sixth Conference on Artificial Intelligence for Applications.

[3]  Norbert Reithinger,et al.  XTRA: A Natural-Language Access System to Expert Systems , 1989, Int. J. Man Mach. Stud..

[4]  Alistair Sutcliffe,et al.  DO USERS KNOW THEY HAVE USER MODELS? SOME EXPERIENCES IN THE PRACTICE OF USER MODELLING , 1987 .

[5]  Alfred Kobsa,et al.  User Models and Discourse Models: United They Stand . . . , 1988, CL.

[6]  David N. Chin KNOME: Modeling What the User Knows in UC , 1989 .

[7]  Ben Shneiderman,et al.  Direct Manipulation: A Step Beyond Programming Languages , 1983, Computer.

[8]  Stuart C. Shapiro,et al.  SNePS Considered as a Fully Intensional Propositional Semantic Network , 1986, AAAI.

[9]  Alfred Kobsa,et al.  Modeling the user's conceptual knowledge in BGP‐MS, a user modeling shell system 1 , 1990, Comput. Intell..

[10]  Ralph Schäfer,et al.  SPREADIAC - Intelligente Pfadsuche und -bewertung auf Vererbungsnetzen zur Verarbeitung impliziter Referenzen , 1990, GWAI.

[11]  E. André,et al.  WIP: The Coordinated Generation of Multimodal Presentations from a Common Representation , 1992 .

[12]  Robert Wilensky,et al.  The berkeley UNIX consultant project , 1988 .

[13]  Robert M. MacGregor Using a description classifier to enhance deductive inference , 1991, [1991] Proceedings. The Seventh IEEE Conference on Artificial Intelligence Application.

[14]  Daniel G. Bobrow,et al.  Expert systems: perils and promise , 1986, CACM.

[15]  Jürgen Allgayer,et al.  What's in a 'DET'? Steps towards Determiner-Dependent Inferencing , 1990, AIMSA.

[16]  Ellen Hays,et al.  Two Views of Motion: On Representing Move Events in a Language-Vision System , 1989, GWAI.

[17]  James D. Hollan,et al.  Direct Manipulation Interfaces , 1985, Hum. Comput. Interact..

[18]  Drew McDermott,et al.  From PLANNER to CONNIVER: a genetic approach , 1972, AFIPS '72 (Fall, part II).