Internal Variable and Temperature Modeling Behavior of Viscoelastic Structures -- A Control Analysis

[1]  C. Zener Elasticity and anelasticity of metals , 1948 .

[2]  Edwin R. Fitzgerald,et al.  Temperature Dependence of Dynamic Properties of Elastomers. Relaxation Distributions , 1952 .

[3]  E. Kerwin Damping of Flexural Waves by a Constrained Viscoelastic Layer , 1959 .

[4]  M. Huggins Viscoelastic Properties of Polymers. , 1961 .

[5]  Richard Schapery,et al.  Application of Thermodynamics to Thermomechanical, Fracture, and Birefringent Phenomena in Viscoelastic Media , 1964 .

[6]  Mohammed Tayib Akrawi Stress analysis in viscoelastic bodies under sinusoidal loads , 1964 .

[7]  R. Ditaranto Theory of Vibratory Bending for Elastic and Viscoelastic Layered Finite-Length Beams , 1965 .

[8]  B. Lazan Damping of materials and members in structural mechanics , 1968 .

[9]  David G. Jones,et al.  Vibration and Shock in Damped Mechanical Systems , 1968 .

[10]  D. J. Mead,et al.  The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions , 1969 .

[11]  R. Taylor,et al.  Thermomechanical analysis of viscoelastic solids , 1970 .

[12]  S. H. Crandall The role of damping in vibration theory , 1970 .

[13]  J. Rice Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity , 1971 .

[14]  K. Valanis Irreversible thermodynamics of continuous media , 1972 .

[15]  B. S. Berry,et al.  Anelastic Relaxation in Crystalline Solids , 1972 .

[16]  K. Valanis,et al.  Irreversible Thermodynamics of Continuous Media: Internal Variable Theory , 1973 .

[17]  L. Cremer,et al.  Structure-Borne Sound: Structural Vibrations and Sound Radiation at Audio Frequencies , 1973 .

[18]  C. W. Bert,et al.  Material damping - An introductory review of mathematical models, measures and experimental techniques. , 1973 .

[19]  B. E. Douglas,et al.  Transverse Compressional Damping in the Vibratory Response of Elastic-Viscoelastic-Elastic Beams. , 1978 .

[20]  David A. Kienholz,et al.  Finite element prediction of damping in structures with constrained viscoelastic layers , 1981 .

[21]  Peter J. Torvik,et al.  Fractional calculus-a di erent approach to the analysis of viscoelastically damped structures , 1983 .

[22]  J. Soovere,et al.  A Design Guide for Damping of Aerospace Structures , 1984 .

[23]  Anuradha M. Annaswamy,et al.  Robust Adaptive Control , 1984, 1984 American Control Conference.

[24]  H. K. Milne The impulse response function of a single degree of freedom system with hysteretic damping , 1985 .

[25]  D. Golla Dynamics of viscoelastic structures: a time-domain finite element formulation , 1985 .

[26]  The impulse response function of a damped single degree of freedom system , 1986 .

[27]  Daniel J. Segalman,et al.  Calculation of damping matrices for linearly viscoelastic structures , 1987 .

[28]  Y. Saad Projection and deflation method for partial pole assignment in linear state feedback , 1988 .

[29]  M. Safonov,et al.  A Schur Method for Balanced Model Reduction , 1988, 1988 American Control Conference.

[30]  A. Hamdan,et al.  Measures of Modal Controllability and Observability for First- and Second-Order Linear Systems , 1989 .

[31]  James F. Doyle,et al.  Wave Propagation in Structures , 1989 .

[32]  Nicholas W. Tschoegl,et al.  The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction , 1989 .

[33]  Leonard Meirovitch,et al.  Dynamics And Control Of Structures , 1990 .

[34]  George A. Lesieutre,et al.  Finite element modeling of frequency-dependent material damping using augmenting thermodynamic fields , 1990 .

[35]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[36]  David W. Lewis,et al.  Matrix theory , 1991 .

[37]  Daniel J. Inman,et al.  Control-Oriented Order Reduction of Finite Element Model , 1991, 1991 American Control Conference.

[38]  D. J. Inman,et al.  Significance of modeling internal damping in the control of structures , 1992 .

[39]  A. Johnson,et al.  A Viscohyperelastic Maxwell Model for Rubber Viscoelasticity , 1992 .

[40]  Petros A. Ioannou,et al.  Linear Time-Varying Systems: Control and Adaptation , 1992 .

[41]  George A. Lesieutre,et al.  Finite elements for dynamic modeling of uniaxial rods with frequency-dependent material properties , 1992 .

[42]  D. Mctavish,et al.  Finite element modeling of linear viscoelastic structures: The GHM method. , 1992 .

[43]  Arthur R. Johnson,et al.  Rubber Viscoelasticity Using the Physically Constrained System's Stretches as Internal Variables , 1993 .

[44]  T. Yiu,et al.  Finite element analysis of structures with classical viscoelastic materials , 1993 .

[45]  P. Hughes,et al.  Modeling of linear viscoelastic space structures , 1993 .

[46]  Daniel J. Inman,et al.  Control-Oriented Order Reduction of Finite Element Model , 1993 .

[47]  I. Y. Shen,et al.  Bending-vibration control of composite and isotropic plates through intelligent constrained-layer treatments , 1994 .

[48]  Y. Yiu,et al.  Substructure and finite element formulation for linear viscoelastic materials , 1994 .

[49]  Amr M. Baz,et al.  Performance characteristics of active constrained-layer damping , 1994, Smart Structures.

[50]  I. Y. Shen,et al.  Hybrid Damping Through Intelligent Constrained Layer Treatments , 1994 .

[51]  T. Shimogo Vibration Damping , 1994, Active and Passive Vibration Damping.

[52]  Wolfgang Muschik,et al.  Thermodynamics with Internal Variables. Part I. General Concepts , 1994 .

[53]  Daniel J. Inman,et al.  Modeling active constrained-layer damping using Golla-Hughes-McTavish approach , 1995, Smart Structures.

[54]  P. Cupiał,et al.  Vibration and damping analysis of a three-layered composite plate with a viscoelastic mid-layer , 1995 .

[55]  A. Baz,et al.  Optimum Design and Control of Active Constrained Layer Damping , 1995 .

[56]  G. Lesieutre,et al.  Time Domain Modeling of Linear Viscoelasticity Using Anelastic Displacement Fields , 1995 .

[57]  George A. Lesieutre,et al.  Finite element modeling of one-dimensional viscoelastic structures using anelastic displacement fields , 1996 .

[58]  Edward C. Smith,et al.  Thermomechanical modeling of elastomeric materials , 1996 .

[59]  Edward C. Smith,et al.  Aeroelastic Response & Stability of Helicopters with Elastomeric Lag Dampers , 1996 .

[60]  Daniel J. Inman,et al.  Some design considerations for active and passive constrained layer damping treatments , 1996 .

[61]  E. Smith,et al.  Formulation : Validation, and Application of a Finite Element Model for Elastomeric Lag Dampers , 1996 .

[62]  George A. Lesieutre,et al.  Finite element modeling of frequency-dependent and temperature-dependent dynamic behavior of viscoelastic materials in simple shear , 1996 .

[63]  I. Y. Shen Stability and Controllability of Euler-Bernoulli Beams With Intelligent Constrained Layer Treatments , 1996 .

[64]  Usik Lee,et al.  A finite element for beams having segmented active constrained layers with frequency-dependent viscoelastics , 1996 .

[65]  Wei-Hsin Liao,et al.  On the Active-Passive Hybrid Control Actions of Structures With Active Constrained Layer Treatments , 1997 .

[66]  H. Rothert,et al.  Formulation and implementation of three-dimensional viscoelasticity at small and finite strains , 1997 .

[67]  Margaretha Johanna Lam,et al.  Hybrid Active/Passive Models With Frequency Dependent Damping , 1997 .

[68]  Daniel J. Inman,et al.  On the Realisation of GHM Models in Viscoelasticity , 1997 .

[69]  Charles R. Farrar,et al.  DIAMOND: A graphical interface toolbox for comparative modal analysis and damage identification , 1997 .

[70]  Daniel J. Inman,et al.  Vibration control through passive constrained layer damping and active control , 1997, Smart Structures.

[71]  M. Soula,et al.  TRANSIENT RESPONSES OF POLYMERS AND ELASTOMERS DEDUCED FROM HARMONIC RESPONSES , 1997 .

[72]  Nuno M. M. Maia,et al.  Theoretical and Experimental Modal Analysis , 1997 .

[73]  J. Bay Fundamentals of Linear State Space Systems , 1998 .

[74]  I. Y. Shen,et al.  Analytical model for a passive stand-off layer damping treatment applied to an Euler-Bernoulli beam , 1998, Smart Structures.

[75]  Norman M. Wereley,et al.  Frequency response of beams with passively constrained damping layers and piezoactuators , 1998, Smart Structures.

[76]  Kyungyol Kim,et al.  THE FORCED VIBRATION OF A BEAM WITH VISCOELASTIC BOUNDARY SUPPORTS , 1998 .

[77]  E. Austin,et al.  Influences of Higher Order Modeling Techniques on the Analysis of Layered Viscoelastic Damping Treatments , 1998 .

[78]  Amr M. Baz Robust control of active constrained layer damping , 1998 .

[79]  Daniel J. Inman,et al.  Variations of hybrid damping , 1998, Smart Structures.

[80]  Aditi Chattopadhyay,et al.  Modeling segmented active constrained layer damping using hybrid displacement field , 1999 .

[81]  Rainer Niekamp,et al.  Finite elements in space and time for parallel computing of viscoelastic deformation , 1999 .

[82]  M. A. Trindade,et al.  Modeling of Frequency-Dependent Viscoelastic Materials for Active-Passive Vibration Damping , 2000 .

[83]  Edward C. Smith,et al.  Characterization and Modeling of the Low Strain Amplitude and Frequency Dependent Behavior of Elastomeric Damper Materials , 1998 .

[84]  A. Baz Spectral finite-element modeling of the longitudinal wave propagation in rods treated with active constrained layer damping , 2000 .

[85]  Daniel J. Inman,et al.  Hybrid damping models using the Golla-Hughes-McTavish method with internally balanced model reduction and output feedback , 2000 .

[86]  Marcelo A. Trindade Controle hybride actif-passif des vibrations de structures par des materiaux piezoelectriques et viscoelastiques : poutres sandwich/multicouches intelligentes , 2000 .

[87]  Roger Ohayon,et al.  Finite element analysis of frequency- and temperature-dependent hybrid active-passive vibration damping , 2000 .

[88]  Daniel J. Segalman,et al.  Characterizing damping and restitution in compliant impacts via modified K-V and higher-order linear viscoelastic models , 2000 .

[89]  Rainer Niekamp,et al.  Continuous and discontinuous Galerkin methods with finite elements in space and time for parallel computing of viscoelastic deformation , 2000 .

[90]  T. Liu,et al.  THE MODELLING AND VIBRATION CONTROL OF BEAMS WITH ACTIVE CONSTRAINED LAYER DAMPING , 2001 .

[91]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[92]  Razvan Rusovici,et al.  Development and validation of anelastic-displacement-fields-based dynamic finite elements , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[93]  Daniel J. Inman,et al.  Using state observers to model viscoelastic effects , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[94]  D. Henwood,et al.  Approximating the hysteretic damping matrix by a viscous matrix for modelling in the time domain , 2002 .

[95]  Daniel J. Inman,et al.  The role of internal variables on the control of viscoelastic structures , 2002 .

[96]  Farhan Gandhi,et al.  Effectiveness of Active Constrained Layer Damping Treatments in Attenuating Resonant Oscillations , 2002 .

[97]  Peter F. Cento,et al.  Finite Element Modeling of Segmented Active Constrained Damping Layers including Bonding Layer Effect , 2002 .

[98]  R. Sullivan,et al.  Method for Determination of Viscoelastic Parameters Using the Principle of Correspondence , 2002 .

[99]  Gang Wang,et al.  Spectral Finite Element Analysis of Sandwich Beams With Passive Constrained Layer Damping , 2002 .