Universality beyond power laws and the average avalanche shape

Power-law scaling of critical phenomena has been most powerful for predictions near a critical point. By averaging the noise emitted by avalanches of a given duration, however, universal scaling functions can extend the predictive power of scaling far from the critical point.

[1]  K. Wilson The renormalization group: Critical phenomena and the Kondo problem , 1975 .

[2]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[3]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[4]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[5]  Arianna Montorsi,et al.  Domain-wall dynamics and Barkhausen effect in metallic ferromagnetic materials. I, Theory , 1990 .

[6]  Shore,et al.  Hysteresis and hierarchies: Dynamics of disorder-driven first-order phase transformations. , 1992, Physical review letters.

[7]  M. Weissman,et al.  Statistical characterization of Barkhausen noise. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  Mills,et al.  Criticality in the plastic deformation of L12 intermetallic compounds. , 1994, Physical review. B, Condensed matter.

[9]  Yehuda Ben-Zion,et al.  Statistics of Earthquakes in Simple Models of Heterogeneous Faults , 1997 .

[10]  Dynamics of a Ferromagnetic Domain Wall and the Barkhausen Effect , 1997, cond-mat/9709300.

[11]  H. Eugene Stanley,et al.  Dynamics of a ferromagnetic domain wall: Avalanches, depinning transition, and the Barkhausen effect , 1998 .

[12]  Collective transport in random media: from superconductors to earthquakes , 1997, cond-mat/9711179.

[13]  Bray Random walks in logarithmic and power-law potentials, nonuniversal persistence, and vortex dynamics in the two-dimensional XY model , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  Scaling exponents for barkhausen avalanches in polycrystalline and amorphous ferromagnets , 2000, Physical review letters.

[15]  James P. Sethna,et al.  Noise in disordered systems: The power spectrum and dynamic exponents in avalanche models , 2000 .

[16]  J. Sethna,et al.  Crackling noise , 2001, Nature.

[17]  J. Sethna,et al.  Crackling noise : Complex systems , 2001 .

[18]  James P Sethna,et al.  Universal pulse shape scaling function and exponents: critical test for avalanche models applied to Barkhausen noise. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  On the power spectrum of magnetization noise , 2001, cond-mat/0106113.

[20]  Francesca Colaiori,et al.  Average shape of a fluctuation: universality in excursions of stochastic processes. , 2003, Physical review letters.

[21]  Shape of a Barkhausen pulse , 2004, cond-mat/0507296.

[22]  S. Zapperi,et al.  The Barkhausen Effect , 2004, cond-mat/0404512.

[23]  Isaak D. Mayergoyz,et al.  The science of hysteresis , 2005 .

[24]  Francesca Colaiori,et al.  Signature of effective mass in crackling-noise asymmetry , 2005, cond-mat/0507607.

[25]  1/f noise and avalanche scaling in plastic deformation. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Michael Zaiser,et al.  Scale invariance in plastic flow of crystalline solids , 2006 .

[27]  S. Zapperi,et al.  Effects of thickness on the statistical properties of the Barkhausen noise in amorphous films , 2006 .

[28]  F. Bohn,et al.  Thickness dependence of the high-frequency magnetic permeability in amorphous Fe73.5Cu1Nb3Si13.5B9 thin films , 2007 .

[29]  Sung-Chul Shin,et al.  Tunable scaling behaviour observed in Barkhausen criticality of a ferromagnetic film , 2007 .

[30]  D. Litvinov,et al.  Magnetic force microscopy study of magnetic stripe domains in sputter deposited Permalloy thin films , 2008 .

[31]  F. Colaiori Exactly solvable model of avalanches dynamics for Barkhausen crackling noise , 2008, 0902.3173.

[32]  P. Le Doussal,et al.  Size distributions of shocks and static avalanches from the functional renormalization group. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  X. Illa,et al.  The effect of thresholding on temporal avalanche statistics , 2008, 0810.0948.