Evolutionary trajectories of primate genes involved in HIV pathogenesis.

The current availability of five complete genomes of different primate species allows the analysis of genetic divergence over the last 40 million years of evolution. We hypothesized that the interspecies differences observed in susceptibility to HIV-1 would be influenced by the long-range selective pressures on host genes associated with HIV-1 pathogenesis. We established a list of human genes (n = 140) proposed to be involved in HIV-1 biology and pathogenesis and a control set of 100 random genes. We retrieved the orthologous genes from the genome of humans and of four nonhuman primates (Pan troglodytes, Pongo pygmaeus abeli, Macaca mulatta, and Callithrix jacchus) and analyzed the nucleotide substitution patterns of this data set using codon-based maximum likelihood procedures. In addition, we evaluated whether the candidate genes have been targets of recent positive selection in humans by analyzing HapMap Phase 2 single-nucleotide polymorphisms genotyped in a region centered on each candidate gene. A total of 1,064 sequences were used for the analyses. Similar median K(A)/K(S) values were estimated for the set of genes involved in HIV-1 pathogenesis and for control genes, 0.19 and 0.15, respectively. However, genes of the innate immunity had median values of 0.37 (P value = 0.0001, compared with control genes), and genes of intrinsic cellular defense had K(A)/K(S) values around or greater than 1.0 (P value = 0.0002). Detailed assessment allowed the identification of residues under positive selection in 13 proteins: AKT1, APOBEC3G, APOBEC3H, CD4, DEFB1, GML, IL4, IL8RA, L-SIGN/CLEC4M, PTPRC/CD45, Tetherin/BST2, TLR7, and TRIM5alpha. A number of those residues are relevant for HIV-1 biology. The set of 140 genes involved in HIV-1 pathogenesis did not show a significant enrichment in signals of recent positive selection in humans (intraspecies selection). However, we identified within or near these genes 24 polymorphisms showing strong signatures of recent positive selection. Interestingly, the DEFB1 gene presented signatures of both interspecies positive selection in primates and intraspecies recent positive selection in humans. The systematic assessment of long-acting selective pressures on primate genomes is a useful tool to extend our understanding of genetic variation influencing contemporary susceptibility to HIV-1.

[1]  A. Telenti HIV-1 host interactions: integration of large-scale datasets , 2009, F1000 biology reports.

[2]  Joseph K. Pickrell,et al.  The Role of Geography in Human Adaptation , 2009, PLoS genetics.

[3]  D. Pillay,et al.  Mutation of a Single Residue Renders Human Tetherin Resistant to HIV-1 Vpu-Mediated Depletion , 2009, PLoS pathogens.

[4]  Amy S. Espeseth,et al.  Host Cell Factors in HIV Replication: Meta-Analysis of Genome-Wide Studies , 2009, PLoS pathogens.

[5]  P. Bieniasz,et al.  Species-Specific Activity of HIV-1 Vpu and Positive Selection of Tetherin Transmembrane Domain Variants , 2009, PLoS pathogens.

[6]  Barbara E. Stranger,et al.  Gene Expression Levels Are a Target of Recent Natural Selection in the Human Genome , 2008, Molecular biology and evolution.

[7]  Amy S. Espeseth,et al.  Genome-scale RNAi screen for host factors required for HIV replication. , 2008, Cell host & microbe.

[8]  R. König,et al.  Global Analysis of Host-Pathogen Interactions that Regulate Early-Stage HIV-1 Replication , 2008, Cell.

[9]  D. Pérez-Caballero,et al.  Evidence for Restriction of Ancient Primate Gammaretroviruses by APOBEC3 but Not TRIM5α Proteins , 2008, PLoS pathogens.

[10]  R. Nielsen,et al.  Patterns of Positive Selection in Six Mammalian Genomes , 2008, PLoS genetics.

[11]  A. Löytynoja,et al.  Phylogeny-Aware Gap Placement Prevents Errors in Sequence Alignment and Evolutionary Analysis , 2008, Science.

[12]  M. Carrington,et al.  The evolutionary history of the CD209 (DC-SIGN) family in humans and non-human primates , 2008, Genes and Immunity.

[13]  M. Malim,et al.  SnapShot: HIV-1 Proteins , 2008, Cell.

[14]  M. Gerstein,et al.  Rapid Evolution by Positive Darwinian Selection in T-Cell Antigen CD4 in Primates , 2008, Journal of Molecular Evolution.

[15]  L. Quintana-Murci,et al.  Natural selection has driven population differentiation in modern humans , 2008, Nature Genetics.

[16]  J. Lieberman,et al.  Identification of Host Proteins Required for HIV Infection Through a Functional Genomic Screen , 2008, Science.

[17]  Patrick Taffé,et al.  In Vitro Whole-Genome Analysis Identifies a Susceptibility Locus for HIV-1 , 2008, PLoS biology.

[18]  F. Bushman,et al.  The Interferon Response Inhibits HIV Particle Production by Induction of TRIM22 , 2008, PLoS pathogens.

[19]  P. Bieniasz,et al.  Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu , 2008, Nature.

[20]  A. Telenti,et al.  Antiretroviral Activity of Ancestral TRIM5α , 2007, Journal of Virology.

[21]  Michael Emerman,et al.  Discordant Evolution of the Adjacent Antiretroviral Genes TRIM22 and TRIM5 in Mammals , 2007, PLoS pathogens.

[22]  J. Casanova,et al.  Immunology in natura: clinical, epidemiological and evolutionary genetics of infectious diseases , 2007, Nature Immunology.

[23]  Pardis C Sabeti,et al.  Genome-wide detection and characterization of positive selection in human populations , 2007, Nature.

[24]  Andreas Wagner,et al.  Rapid Detection of Positive Selection in Genes and Genomes Through Variation Clusters , 2007, Genetics.

[25]  M. Emerman,et al.  Restriction of an Extinct Retrovirus by the Human TRIM5α Antiviral Protein , 2007, Science.

[26]  A. Vazquez,et al.  Epstein–Barr virus and virus human protein interaction maps , 2007, Proceedings of the National Academy of Sciences.

[27]  S. Goff,et al.  Host factors exploited by retroviruses , 2007, Nature Reviews Microbiology.

[28]  E. Eichler,et al.  Population Stratification of a Common APOBEC Gene Deletion Polymorphism , 2007, PLoS genetics.

[29]  R. Redon,et al.  Relative Impact of Nucleotide and Copy Number Variation on Gene Expression Phenotypes , 2007, Science.

[30]  Pardis C Sabeti,et al.  Positive Natural Selection in the Human Lineage , 2006, Science.

[31]  M. Emerman,et al.  Adaptive Evolution and Antiviral Activity of the Conserved Mammalian Cytidine Deaminase APOBEC3H , 2006, Journal of Virology.

[32]  J. Pritchard,et al.  A Map of Recent Positive Selection in the Human Genome , 2006, PLoS biology.

[33]  A. Telenti,et al.  Patterns of evolution of host proteins involved in retroviral pathogenesis , 2006, Retrovirology.

[34]  Ryan D. Hernandez,et al.  Natural selection on protein-coding genes in the human genome , 2005, Nature.

[35]  S. Nisole,et al.  TRIM family proteins: retroviral restriction and antiviral defence , 2005, Nature Reviews Microbiology.

[36]  Jean L. Chang,et al.  Initial sequence of the chimpanzee genome and comparison with the human genome , 2005, Nature.

[37]  W. Wong,et al.  Bayes empirical bayes inference of amino acid sites under positive selection. , 2005, Molecular biology and evolution.

[38]  Michael Emerman,et al.  Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[39]  T. Heidmann,et al.  APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses , 2005, Nature.

[40]  Reuben S. Harris,et al.  Retroviral restriction by APOBEC proteins , 2004, Nature Reviews Immunology.

[41]  M. Emerman,et al.  Ancient Adaptive Evolution of the Primate Antiviral DNA-Editing Enzyme APOBEC3G , 2004, PLoS biology.

[42]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[43]  C. M. Owens,et al.  The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys , 2004, Nature.

[44]  M. Adams,et al.  Inferring Nonneutral Evolution from Human-Chimp-Mouse Orthologous Gene Trios , 2003, Science.

[45]  Matthew W. Hahn,et al.  Positive Selection on a Human-Specific Transcription Factor Binding Site Regulating IL4 Expression , 2003, Current Biology.

[46]  A. Hughes,et al.  Novel Member of the CD209 (DC-SIGN) Gene Family in Primates , 2003, Journal of Virology.

[47]  M. Birnbaum,et al.  Role of Akt/protein kinase B in metabolism , 2002, Trends in Endocrinology & Metabolism.

[48]  S. Rowland-Jones Faculty Opinions recommendation of Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. , 2002 .

[49]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[50]  A. Amoroso,et al.  β-Defensin 1 gene variability among non-human primates , 2002, Immunogenetics.

[51]  E. Tchilian,et al.  A point mutation in CD45 may be associated with an increased risk of HIV-1 infection. , 2001, AIDS.

[52]  Ziheng Yang,et al.  Statistical methods for detecting molecular adaptation , 2000, Trends in Ecology & Evolution.

[53]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[54]  N. Goldman,et al.  Codon-substitution models for heterogeneous selection pressure at amino acid sites. , 2000, Genetics.

[55]  J. Sodroski,et al.  Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody , 1998, Nature.

[56]  M. Previati,et al.  Extracellular HIV‐1 Tat protein activates phosphatidylinositol 3‐ and Akt/PKB kinases in CD4+ T lymphoblastoid Jurkat cells , 1997, European journal of immunology.

[57]  Ziheng Yang,et al.  PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..

[58]  M. Kazhdan,et al.  Neutrophil deactivation by influenza A virus. Role of hemagglutinin binding to specific sialic acid-bearing cellular proteins. , 1995, Journal of immunology.

[59]  R. Horuk,et al.  Partial functional mapping of the human interleukin-8 type A receptor. Identification of a major ligand binding domain. , 1993, The Journal of biological chemistry.

[60]  M. Goodman,et al.  The genomic record of Humankind's evolutionary roots. , 1999, American journal of human genetics.