Cable-based parallel manipulator for rehabilitation of shoulder and elbow movements

In this paper a cable-based system is presented for rehabilitation of the shoulder and elbow movements. Cable-based manipulators have very good kinematic and dynamic characteristics, and they also show other properties such as: transportability and low-cost construction, which make them also suitable for medical applications and rehabilitation. The general robotics structure consists of four cables that allow the movement of vertical flexion-extension, abduction-adduction and horizontal flexion-extension with different limits of movement and speed of the shoulder. The structure can also perform the elbow movements of the flexion-extension. The development of this robotic device is justified by the large number of people with upper limb problems. These problems are due of stroke, polio, arthritis, recovery after accidents or trauma and can be applied to movements of physical therapy. The kinematics model of cable-based parallel robots is obtained similarly to the model obtained from traditional parallel structures. The graphical simulations of the cable-based parallel structure for rehabilitation of the movements of the human arm are presented showing the viability of the proposed structure. Finally preliminary experimental tests are presented.

[1]  C. Burgar,et al.  Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. , 2002, Archives of physical medicine and rehabilitation.

[2]  Paolo Gallina,et al.  NeRebot: a wire-based robot for neurorehabilitation , 2003 .

[3]  Keiko Homma,et al.  Study of a wire-driven leg rehabilitation system , 2004, IROS.

[4]  P. Gallina,et al.  Design of a new 5 d.o.f. wire-based robot for rehabilitation , 2005, 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005..

[5]  R. Riener,et al.  ARMin - design of a novel arm rehabilitation robot , 2005, 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005..

[6]  W. Rymer,et al.  Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled pilot study , 2006, Journal of NeuroEngineering and Rehabilitation.

[7]  R.F. Beer,et al.  Development of the MACARM - a novel cable robot for upper limb neurorehabilitation , 2005, 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005..

[8]  M. Ceccarelli,et al.  A 4–4 cable-based parallel manipulator for an application in hospital environment , 2007, 2007 Mediterranean Conference on Control & Automation.

[9]  G. Fazekas,et al.  Robot-mediated upper limb physiotherapy for patients with spastic hemiparesis: a preliminary study. , 2007, Journal of rehabilitation medicine.

[10]  Erika Ottaviano,et al.  A Cable-Based System for Aiding Elderly People in Sit-to-Stand Transfer , 2008 .

[11]  Wilgo Moreira Nunes Desenvolvimento de uma estrutura robótica atuada por cabos para reabilitação/recuperação dos movimentos do ombro humano , 2012 .