Screening based approach and dehydrogenation kinetics for MgH2: Guide to find suitable dopant using first-principles approach

[1]  M. Dahari,et al.  A review on the current progress of metal hydrides material for solid-state hydrogen storage applications , 2016 .

[2]  J. Schou,et al.  Formation of copper tin sulfide films by pulsed laser deposition at 248 and 355 nm , 2016 .

[3]  A. Benyoussef,et al.  Study of doping effects with 3d and 4d-transition metals on the hydrogen storage properties of MgH2 , 2016 .

[4]  Xinxin Zhao,et al.  First-principles investigation of the effects of Ni and Y co-doped on destabilized MgH2 , 2016 .

[5]  Torben R. Jensen,et al.  Review of magnesium hydride-based materials: development and optimisation , 2016 .

[6]  C. J. Webb A review of catalyst-enhanced magnesium hydride as a hydrogen storage material , 2015 .

[7]  R. Ahuja,et al.  Improvement in hydrogen desorption from β- and γ-MgH2 upon transition-metal doping. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[8]  A. Benyoussef,et al.  The hydrogen ab/desorption kinetic properties of doped magnesium hydride MgH2 systems by first principles calculations and kinetic Monte Carlo simulations , 2015 .

[9]  Y. Zhou,et al.  Dehydrogenation thermodynamics of magnesium hydride doped with transition metals: Experimental and theoretical studies , 2015 .

[10]  Bi‐Yu Tang,et al.  First-Principles Investigation of Dehydrogenation on Cu-Doped MgH2 (001) and (110) Surfaces , 2014 .

[11]  R. Ahuja,et al.  Improvement in the desorption of H2 from the MgH2 (1 1 0) surface by means of doping and mechanical strain , 2014 .

[12]  W. Ding,et al.  Influence of 3d transition metals on the stability and electronic structure of MgH2 , 2012 .

[13]  Duane D. Johnson,et al.  Hydrogen Desorption from Ti-Doped MgH2(110) Surfaces: Catalytic Effect on Reaction Pathways and Kinetic Barriers , 2012 .

[14]  Yinglin Song,et al.  Intrinsic mechanisms on enhancement of hydrogen desorption from MgH(2) by (001) surface doping , 2011 .

[15]  R. Ahuja,et al.  Dehydrogenation associated with Ti catalyst in sodium alanate , 2010 .

[16]  Jieyu Zhang,et al.  Dehydrogenation kinetics of magnesium hydride investigated by DFT and experiment , 2010 .

[17]  Ronggui Yang,et al.  First Principles Study on Hydrogen Desorption from a Metal (=Al, Ti, Mn, Ni) Doped MgH2 (110) Surface , 2010 .

[18]  G. Brocks,et al.  Tunable hydrogen storage in magnesium-transition metal compounds: First-principles calculations , 2008, 0810.2254.

[19]  M. Polański,et al.  The effect of milling conditions on microstructure and hydrogen absorption/desorption properties of magnesium hydride (MgH2) without and with Cr2O3 nanoparticles , 2008 .

[20]  Jens Löffler,et al.  Progress in high-power nickel–metal hydride batteries , 2008 .

[21]  D. Alfé,et al.  Structural properties and enthalpy of formation of magnesium hydride from quantum Monte Carlo calculations , 2008, 0801.2865.

[22]  Shuang Li,et al.  Investigation on high-pressure metal hydride hydrogen compressors , 2007 .

[23]  R. Ahuja,et al.  Dehydrogenation from 3d-transition-metal-doped NaAlH4 : Prediction of catalysts , 2007 .

[24]  Stanford R. Ovshinsky,et al.  Recent advances in NiMH battery technology , 2007 .

[25]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[26]  R. Ahuja,et al.  Dehydrogenation Mechanism in Catalyst-activated MgH2 , 2006 .

[27]  Sean C. Smith,et al.  Ab initio studies of hydrogen desorption from low index magnesium hydride surface , 2006 .

[28]  David S Sholl,et al.  Identification of destabilized metal hydrides for hydrogen storage using first principles calculations. , 2006, The journal of physical chemistry. B.

[29]  Florian Mertens,et al.  Reversible storage of hydrogen in destabilized LiBH4. , 2005, The journal of physical chemistry. B.

[30]  Robert C. Bowman,et al.  Gas-based hydride applications: recent progress and future needs , 2003 .

[31]  A. Yamada,et al.  Reversible hydrogen decomposition of KAlH4 , 2003 .

[32]  Gerbrand Ceder,et al.  First-principles study of the stability and electronic structure of metal hydrides , 2002 .

[33]  H. Fjellvåg,et al.  Pressure-induced structural transitions in MgH2. , 2002, Physical review letters.

[34]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[35]  Robert Schulz,et al.  Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2-Tm (Tm=Ti, V, Mn, Fe and Ni) systems , 1999 .

[36]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[37]  Chris J. Pickard,et al.  Population analysis in plane wave electronic structure calculations , 1996 .

[38]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[39]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[40]  R. A. Fellows,et al.  Aircraft thermal detection utilizing metal hydrides , 1984 .

[41]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[42]  Pol Torres Alvarez,et al.  First Principles Calculations , 2018 .

[43]  R. Ahuja,et al.  Dehydrogenation from 3 d-transition-metal-doped NaAlH 4 : Prediction of catalysts , 2017 .

[44]  R. Ahuja,et al.  Strain and doping effects on the energetics of hydrogen desorption from the MgH2 (001) surface , 2013 .