On algorithms for non-convex optimization

A simple algorithm for the computation of local minima of non-convex problems in one dimension is proposed. This algorithm avoids certain well known local minima which are distant from the global minimum, and can be used to improve the minima obtained using classical descent methods. The calculated minima have mesh scale oscillations typical of weakly converging sequences. It is shown that these local minima converge weakly to the correct limit for certain simple problems; however, numerical evidence suggests that the gradients may not converge to the correct weak limits, and this is verified using asymptotic expansions. Extensions to multiple dimensions and some numerical examples in two dimensions are considered.

[1]  Luc Tartar,et al.  On Mathematical Tools for Studying Partial Differential Equations of Continuum Physics: H-Measures and Young Measures , 1992 .

[2]  D. Owen Deformations and stresses with and without microslip , 1992 .

[3]  S Nemat-Nasser,et al.  Shear bands as discontinuities , 1992 .

[4]  Yisong Yang An equivalence theorem for string solutions of the Einstein matter-gauge equations , 1992 .

[5]  Ana Cristina Barroso,et al.  Anisotropic singular perturbations—the vectorial case , 1994, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[6]  David Kinderlehrer,et al.  Theory of diffusionless phase transitions , 1989 .

[7]  Ling Ma,et al.  Computation of magnetostrictive materials , 1993, Smart Structures.

[8]  Mitchell Luskin,et al.  Numerical approximation of the solution of variational problem with a double well potential , 1991 .

[9]  David Kinderlehrer,et al.  Theory of magnetostriction with applications to TbxDy1-xFe2 , 1993 .

[10]  Han Wang,et al.  Spurious oscillations in computing microstructures , 1993, Smart Structures.

[11]  D. Kinderlehrer Some methods of analysis in the study of microstructure , 1992 .

[12]  Mitchell Luskin,et al.  Optimal order error estimates for the finite element approximation of the solution of a nonconvex variational problem , 1991 .

[13]  Pierre-Alain Gremaud,et al.  Numerical analysis of a nonconvex variational problem related to solid-solid phase transitions , 1994 .

[14]  David Kinderlehrer,et al.  Mathematical approaches to the study of smart materials , 1993, Smart Structures.

[15]  E. Fried Non-monotonic transformation kinetics and the morphological stability of phase boundaries in thermoelastic materials , 1991 .

[16]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[17]  G. Piero,et al.  Structured deformations of continua , 1993 .

[18]  Michel Chipot,et al.  Numerical approximations in variational problems with potential wells , 1992 .

[19]  D. Kinderlehrer,et al.  The elementary defects of the Oseen-Frank energy for a liquid crystal , 1993 .

[20]  Bernard D. Coleman,et al.  On the thermodynamics of periodic phases , 1992 .

[21]  M. Gurtin,et al.  The continuum mechanics of coherent two-phase elastic solids with mass transport , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[22]  Deborah Brandon,et al.  Constitutive Laws for Pseudo-Elastic Materials , 1992 .

[23]  Philip Holmes,et al.  On the dynamics of fine structure , 1991 .

[24]  Yanyan Li,et al.  On multibump' bound states for certain semilinear elliptic equations , 1992 .

[25]  R. A. Nicolaides,et al.  Computation of Microstructure Utilizing Young Measure Representations , 1993 .

[26]  Sigurd B. Angenent,et al.  Anisotropic motion of a phase interface. , 1991 .

[27]  M. Avellaneda,et al.  Finite difference approximations for partial differential equations with rapidly oscillating coefficients , 1991 .

[28]  D. Kinderlehrer,et al.  Remarks about gradient Young measures generated by sequences in Soblev [i.e., Sobolev] spaces , 1992 .

[29]  David Kinderlehrer,et al.  Frustration and microstructure : an example in magnetostriction , 1991 .

[30]  Mitchell Luskin,et al.  Analysis of the finite element approximation of microstructure in micromagnetics , 1992 .

[31]  L. Young,et al.  Lectures on the Calculus of Variations and Optimal Control Theory. , 1971 .

[32]  F. Reitich,et al.  Generalized motion by mean curvature with Neumann conditions and the Allen-Cahn model for phase transitions , 1995 .

[33]  Fernando Reitich,et al.  Approximation of analytic functions: a method of enhanced convergence , 1994 .

[34]  Morton E. Gurtin,et al.  Thermodynamics and the supercritical Stefan equations with nucleations , 1994 .

[35]  S. Shreve,et al.  Multi-dimensional finite-fuel singular stochastic control , 1992 .

[36]  Y. Giga,et al.  Generalized interface evolution with the Neumann boundary condition , 1991 .

[37]  H. Soner,et al.  A Dynamic Programming Approach to Nonlinear Boundary Control Problems of Parabolic Type , 1993 .

[38]  J. Ball,et al.  Fine phase mixtures as minimizers of energy , 1987 .

[39]  M. Gurtin,et al.  Two-phase continuum mechanics with transport and stress , 1991 .

[40]  Mitchell Luskin,et al.  The computation of the austenitic-martensitic phase transition , 1989 .

[41]  P. Leo,et al.  Shape evolution of an initially circular precipitate growing by diffusion in an applied stress field , 1993 .

[42]  Noel J. Walkington,et al.  Co-volume methods for degenerate parabolic problems , 1993 .