Efficient computation of a simplified medial axis

Applications of of the medial axis have been limited because of its instability and algebraic complexity. In this paper, we use a simplification of the medial axis, the θ-SMA, that is parameterized by a separation angle (θ) formed by the vectors connecting a point on the medial axis to the closest points on the boundary. We present a formal characterization of the degree of simplification of the θ-SMA as a function of θ, and we quantify the degree to which the simplified medial axis retains the features of the original polyhedron.We present a fast algorithm to compute an approximation of the θ-SMA. It is based on a spatial subdivision scheme, and uses fast computation of a distance field and its gradient using graphics hardware. The complexity of the algorithm varies based on the error threshold that is used, and is a linear function of the input size. We have applied this algorithm to approximate the SMA of models with tens or hundreds of thousands of triangles. Its running time varies from a few seconds, for a model consisting of hundreds of triangles, to minutes for highly complex models.

[1]  Martin Styner,et al.  Automatic and Robust Computation of 3D Medial Models Incorporating Object Variability , 2003, International Journal of Computer Vision.

[2]  Tamal K. Dey,et al.  Approximating the Medial Axis from the Voronoi Diagram with a Convergence Guarantee , 2003, Algorithmica.

[3]  Krishnan Suresh,et al.  Automating the CAD/CAE dimensional reduction process , 2003, SM '03.

[4]  Jean-Daniel Boissonnat,et al.  A linear bound on the complexity of the delaunay triangulation of points on polyhedral surfaces , 2002, SMA '02.

[5]  Hans-Peter Seidel,et al.  Linear onesided stability of MAT for weakly injective 3D domain , 2002, SMA '02.

[6]  Tamal K. Dey,et al.  Approximate medial axis as a voronoi subcomplex , 2002, SMA '02.

[7]  Sunghee Choi,et al.  The power crust , 2001, SMA '01.

[8]  Dinesh Manocha,et al.  Fast computation of generalized Voronoi diagrams using graphics hardware , 1999, SIGGRAPH.

[9]  Jean-Daniel Boissonnat,et al.  Smooth surface reconstruction via natural neighbour interpolation of distance functions , 2000, SCG '00.

[10]  Kaleem Siddiqi,et al.  The Hamilton-Jacobi skeleton , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[11]  Steven W. Zucker,et al.  On the evolution of the skeleton , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[12]  Nancy M. Amato,et al.  Motion planning for a rigid body using random networks on the medial axis of the free space , 1999, SCG '99.

[13]  Ari Rappoport,et al.  Computing the Voronoi diagram of a 3-D polyhedron by separate computation of its symbolic and geometric parts , 1999, SMA '99.

[14]  Dinesh Manocha,et al.  Accurate computation of the medial axis of a polyhedron , 1999, SMA '99.

[15]  Dinesh Manocha,et al.  Fast Proximity Queries with Swept Sphere Volumes , 1999 .

[16]  Hwan Pyo Moon,et al.  MATHEMATICAL THEORY OF MEDIAL AXIS TRANSFORM , 1997 .

[17]  Dominique Attali,et al.  Computing and Simplifying 2D and 3D Continuous Skeletons , 1997, Comput. Vis. Image Underst..

[18]  Mark A. Ganter,et al.  Skeleton-based modeling operations on solids , 1997, SMA '97.

[19]  Hao Chen,et al.  An accelerated triangulation method for computing the skeletons of free-form solid models , 1997, Comput. Aided Des..

[20]  Nicholas M. Patrikalakis,et al.  Computation of the Medial Axis Transform of 3-D polyhedra , 1995, Symposium on Solid Modeling and Applications.

[21]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[22]  George M. Turkiyyah,et al.  Computation of 3D skeletons using a generalized Delaunay triangulation technique , 1995, Comput. Aided Des..

[23]  M. Overmars,et al.  Approximating generalized Voronoi diagrams in any dimension , 1995 .

[24]  Patrick Shen-Pei Wang,et al.  Analytical Comparison of Thinning Algorithms , 1993, Int. J. Pattern Recognit. Artif. Intell..

[25]  Ingemar Ragnemalm,et al.  The Euclidean distance transform in arbitrary dimensions , 1992, Pattern Recognit. Lett..

[26]  Victor J. Milenkovic,et al.  Robust Construction of the Voronoi Diagram of a Polyhedron , 1993, CCCG.

[27]  Ching Y. Suen,et al.  Thinning Methodologies - A Comprehensive Survey , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Ching-Shoei Chiang The Euclidean distance transform , 1992 .

[29]  C. Hoffmann,et al.  A geometric investigation of the skeleton of CSG objects , 1990 .

[30]  Christoph M. Hoffmann,et al.  How to Construct the Skeleton of CSG Objects , 1990 .

[31]  James U. Korein,et al.  A geometric investigation of reach , 1985 .

[32]  Jean-Daniel Boissonnat,et al.  Geometric structures for three-dimensional shape representation , 1984, TOGS.

[33]  P. Danielsson Euclidean distance mapping , 1980 .