Tree! I am no Tree! I am a Low Dimensional Hyperbolic Embedding

Given data, finding a faithful low-dimensional hyperbolic embedding of the data is a key method by which we can extract hierarchical information or learn representative geometric features of the data. In this paper, we explore a new method for learning hyperbolic representations that takes a metric-first approach. Rather than determining the low-dimensional hyperbolic embedding directly, we learn a tree structure on the data as an intermediate step. This tree structure can then be used directly to extract hierarchical information, embedded into a hyperbolic manifold using Sarkar's construction (Sarkar, 2012), or used as a tree approximation of the original metric. To this end, we present a novel fast algorithm TreeRep such that, given a $\delta$-hyperbolic metric (for any $\delta \geq 0$), the algorithm learns a tree structure that approximates the original metric. In the case when $\delta = 0$, we show analytically that TreeRep exactly recovers the original tree structure. We show empirically that TreeRep is not only many orders of magnitude faster than previous known algorithms, but also produces metrics with lower average distortion and higher mean average precision than most previous algorithms for learning hyperbolic embeddings, extracting hierarchical information, and approximating metrics via tree metrics.

[1]  M. Rudnicki Faculty Opinions recommendation of Simultaneous epitope and transcriptome measurement in single cells. , 2020 .

[2]  Anna C. Gilbert,et al.  Project and Forget: Solving Large-Scale Metric Constrained Problems , 2019, J. Mach. Learn. Res..

[3]  David Lopez-Paz,et al.  Poincaré maps for analyzing complex hierarchies in single-cell data , 2019, Nature Communications.

[4]  Dustin G. Mixon,et al.  Optimal marker gene selection for cell type discrimination in single cell analyses , 2019, Nature Communications.

[5]  Valentin Khrulkov,et al.  Hyperbolic Image Embeddings , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Douwe Kiela,et al.  Learning Continuous Hierarchies in the Lorentz Model of Hyperbolic Geometry , 2018, ICML.

[7]  Andrew M. Dai,et al.  Embedding Text in Hyperbolic Spaces , 2018, TextGraphs@NAACL-HLT.

[8]  Razvan Pascanu,et al.  Hyperbolic Attention Networks , 2018, ICLR.

[9]  Thomas Hofmann,et al.  Hyperbolic Neural Networks , 2018, NeurIPS.

[10]  Christopher De Sa,et al.  Representation Tradeoffs for Hyperbolic Embeddings , 2018, ICML.

[11]  Tobias Friedrich,et al.  Efficient Embedding of Scale-Free Graphs in the Hyperbolic Plane , 2018, IEEE/ACM Transactions on Networking.

[12]  Douwe Kiela,et al.  Poincaré Embeddings for Learning Hierarchical Representations , 2017, NIPS.

[13]  S. Linnarsson,et al.  Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq , 2015, Science.

[14]  Ryan A. Rossi,et al.  The Network Data Repository with Interactive Graph Analytics and Visualization , 2015, AAAI.

[15]  Subhash Suri,et al.  Metric Embedding, Hyperbolic Space, and Social Networks , 2014, Comput. Geom..

[16]  Jose Maria Sigarreta,et al.  Gromov hyperbolic graphs , 2013, Discret. Math..

[17]  Rik Sarkar,et al.  Low Distortion Delaunay Embedding of Trees in Hyperbolic Plane , 2011, GD.

[18]  Mark Crovella,et al.  Multidimensional Scaling in the Poincaré Disk , 2011, ArXiv.

[19]  M. Hamann On the tree-likeness of hyperbolic spaces , 2011, Mathematical Proceedings of the Cambridge Philosophical Society.

[20]  Amin Vahdat,et al.  Hyperbolic Geometry of Complex Networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Feodor F. Dragan,et al.  Diameters, centers, and approximating trees of delta-hyperbolicgeodesic spaces and graphs , 2008, SCG '08.

[22]  Ittai Abraham,et al.  Reconstructing approximate tree metrics , 2007, PODC '07.

[23]  Shang-Hua Teng,et al.  Lower-stretch spanning trees , 2004, STOC '05.

[24]  Satish Rao,et al.  A tight bound on approximating arbitrary metrics by tree metrics , 2003, STOC '03.

[25]  N. Linial Finite metric spaces: combinatorics, geometry and algorithms , 2002, SCG '02.

[26]  Graham A. Niblo METRIC SPACES OF NON‐POSITIVE CURVATURE (Grundlehren der Mathematischen Wissenschaften 319) , 2001 .

[27]  Oded Schramm,et al.  Embeddings of Gromov Hyperbolic Spaces , 2000 .

[28]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[29]  Feodor F. Dragan,et al.  A Note on Distance Approximating Trees in Graphs , 1999, Eur. J. Comb..

[30]  Andrew Radford,et al.  Linguistics: An Introduction , 1999 .

[31]  I. Polterovich,et al.  Explicit Constructions of Universal R‐Trees and Asymptotic Geometry of Hyperbolic Spaces , 1999, math/9904133.

[32]  Yair Bartal,et al.  On approximating arbitrary metrices by tree metrics , 1998, STOC '98.

[33]  Nathan Linial,et al.  The geometry of graphs and some of its algorithmic applications , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[34]  David Peleg,et al.  An optimal synchronizer for the hypercube , 1987, PODC '87.

[35]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[36]  R. Graham,et al.  On isometric embeddings of graphs , 1985 .

[37]  Robert R. Sokal,et al.  A statistical method for evaluating systematic relationships , 1958 .

[38]  R. Prim Shortest connection networks and some generalizations , 1957 .

[39]  Christopher De Sa,et al.  Numerically Accurate Hyperbolic Embeddings Using Tiling-Based Models , 2019, NeurIPS.

[40]  M. Habib,et al.  Notes on diameters , centers , and approximating trees of δ-hyperbolic geodesic spaces and graphs , 2008 .

[41]  Robert Young NOTES ON ASYMPTOTIC CONES , 2008 .

[42]  N. Alon,et al.  A Graph-Theoretic Game and its Application to the k-Server Problem (Extended Abstract) , 1991, On-Line Algorithms.

[43]  Lyle Campbell,et al.  Historical Linguistics: An Introduction , 1991 .

[44]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[45]  V. Sarich,et al.  Pinniped phylogeny. , 1969, Systematic zoology.