on Some New Types of Greedy Chains and Greedy Linear Extensions of Partially ordered Sets

Abstract Two new types of greedy chains, strongly and semi-strongly greedy, in posets are defined and their role in solving the jump number problem is discussed in this paper. If a poset P contains a strongly greedy chain C then C may be taken as the first chain in an optimal linear extension of P . If a poset P has no strongly greedy chains then it contains an optimal linear extension which starts with a semi-strongly greedy chain. Hence, every poset has an optimal linear extension which consists of strongly and semi-strongly greedy chains. Algorithmic issues of finding such linear extensions are discussed elsewhere (Syslo, 1987, 1988), where we provide a very efficient method for solving the jump number problem which is polynomial in the class of posets whose arc representations contain a bounded number of dummy arcs. In another work, the author has recently demonstrated that this method restricted to interval orders gives rise to 3/2-approximation algorithm for such posets.