Photon‐nanosieve for ultrabroadband and large‐angle‐of‐view holograms

Holography is of great interest for both scientific research and industry applications, but it has always suffered from the strong dependence on wavelength and polarization of the incident light. Having revisited the Huygens-Fresnel principle, we propose a novel holography mechanism by elaborately choosing discrete point sources (PSs) and realize it experimentally by mimicking the radiated fields of these PSs through carefully designed photon-nanosieves. Removing the modulation dispersion usually existing in traditional and metasurface holograms, our hologram empowers the simultaneous operation throughout the ultraviolet, entire visible and near-infrared wavelength regions without polarization dependence. Due to the deep-subwavelength dimension of nanosieves, this robust hologram offers a large angle-of-view of 40°×40° and possesses a lensing effect under a spherical-wave illumination, which can work as a high-resolution, lens-less and distortion-free microprojector that displays a 260× magnified image. It might open an avenue to a high-toler ance holographic technique for electromagnetic and acoustic waves. (Figure presented.).

[1]  E. Leith,et al.  Reconstructed Wavefronts and Communication Theory , 1962 .

[2]  A. Alú,et al.  Full control of nanoscale optical transmission with a composite metascreen. , 2013, Physical review letters.

[3]  Ye Feng Yu,et al.  High‐transmission dielectric metasurface with 2π phase control at visible wavelengths , 2015 .

[4]  M W Farn,et al.  Color separation by use of binary optics. , 1993, Optics letters.

[5]  Jacob Scheuer,et al.  Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays. , 2014, Nano letters.

[6]  Yunuen Montelongo,et al.  Plasmonic nanoparticle scattering for color holograms , 2014, Proceedings of the National Academy of Sciences.

[7]  S. Bennett,et al.  Achromatic combinations of hologram optical elements. , 1976, Applied optics.

[8]  H K Liu,et al.  Real-time computer-generated hologram by means of liquid-crystal television spatial light modulator. , 1986, Optics letters.

[9]  Guoxing Zheng,et al.  Helicity multiplexed broadband metasurface holograms , 2015, Nature Communications.

[10]  Yongtian Wang,et al.  Broadband Hybrid Holographic Multiplexing with Geometric Metasurfaces , 2015, Advanced materials.

[11]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[12]  Jinghua Teng,et al.  Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh–Sommerfeld method , 2013 .

[13]  Yuri S. Kivshar,et al.  High‐Efficiency Dielectric Huygens’ Surfaces , 2015 .

[14]  Peng Jin,et al.  Metamaterial-Inspired, Electrically Small Huygens Sources , 2010, IEEE Antennas and Wireless Propagation Letters.

[15]  L Hesselink,et al.  Volume Holographic Storage and Retrieval of Digital Data , 1994, Science.

[16]  Guofan Jin,et al.  Dispersionless phase discontinuities for controlling light propagation. , 2012, Nano letters.

[17]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[18]  A W Lohmann,et al.  Binary fraunhofer holograms, generated by computer. , 1967, Applied optics.

[19]  I. Brener,et al.  Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. , 2013, ACS nano.

[20]  J. Teng,et al.  Optically reconfigurable metasurfaces and photonic devices based on phase change materials , 2015, Nature Photonics.

[21]  Jinghua Teng,et al.  Ultrahigh-capacity non-periodic photon sieves operating in visible light , 2015, Nature Communications.

[22]  Daniel Wintz,et al.  Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[23]  L. B. Lesem,et al.  The kinoform: a new wavefront reconstruction device , 1969 .

[24]  R. Bartolini,et al.  Characteristics of relief phase holograms recorded in photoresists. , 1974, Applied optics.

[25]  Luis Martín-Moreno,et al.  Light passing through subwavelength apertures , 2010 .

[26]  Weiping Cai,et al.  Plasmonic holographic imaging with V-shaped nanoantenna array. , 2013, Optics express.

[27]  P. Shi,et al.  Design of diffractive phase element for modulating the electric field at the out-of-focus plane in a lens system. , 2012, Applied optics.

[28]  Chunmei Ouyang,et al.  Broadband Metasurfaces with Simultaneous Control of Phase and Amplitude , 2014, Advanced materials.

[29]  C. Qiu,et al.  Advances in Full Control of Electromagnetic Waves with Metasurfaces , 2016 .

[30]  Timothy D Wilkinson,et al.  Polarization switchable diffraction based on subwavelength plasmonic nanoantennas. , 2014, Nano letters.

[31]  Andreas Tünnermann,et al.  Spatial and Spectral Light Shaping with Metamaterials , 2012, Advanced materials.

[32]  Jinghua Teng,et al.  Silicon multi‐meta‐holograms for the broadband visible light , 2016 .

[33]  Darryl L. Smith,et al.  Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well , 2004, Nature.

[34]  D. Gabor A New Microscopic Principle , 1948, Nature.

[35]  J. N. Latta,et al.  Analysis of multiple hologram optical elements with low dispersion and low aberrations. , 1972, Applied optics.

[36]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[37]  A. Lohmann,et al.  Complex spatial filtering with binary masks. , 1966, Applied optics.

[38]  A. Arbabi,et al.  Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. , 2014, Nature nanotechnology.

[39]  F Moreno,et al.  Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere , 2012, Nature Communications.

[40]  A. Malko,et al.  Optical gain and stimulated emission in nanocrystal quantum dots. , 2000, Science.

[41]  Jan Westerholm,et al.  Kinoform Phase Relief Synthesis: A Stochastic Method , 1989 .

[42]  J. N. Latta,et al.  Computer-Based Analysis of Hologram Imagery and Aberrations II: Aberrations Induced by a Wavelength Shift. , 1971, Applied optics.

[43]  Jennifer E. Curtis,et al.  Dynamic holographic optical tweezers , 2002 .

[44]  Qiaofeng Tan,et al.  Three-dimensional optical holography using a plasmonic metasurface , 2013, Nature Communications.

[45]  Chih-Ming Wang,et al.  Aluminum plasmonic multicolor meta-hologram. , 2015, Nano letters.

[46]  C. Pfeiffer,et al.  Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets. , 2013, Physical review letters.

[47]  A A Friesem,et al.  Recursive design for an efficient HOE with different recording and readout wavelengths. , 1988, Applied optics.

[48]  Vladimir M. Shalaev,et al.  Metasurface holograms for visible light , 2013, Nature Communications.

[49]  A. Love,et al.  The Integration of the Equations of Propagation of Electric Waves , 2022 .

[50]  S. Eisebitt,et al.  Lensless imaging of magnetic nanostructures by X-ray spectro-holography , 2004, Nature.

[51]  I. Weingärtner,et al.  Chromatic Correction of Two- and Three-element Holographic Imaging Systems , 1982 .

[52]  R. L. Johnson,et al.  Sharper images by focusing soft X-rays with photon sieves , 2001, Nature.

[53]  E. Cuche,et al.  Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. , 2005, Optics letters.

[54]  Y Ichioka,et al.  Scanning halftone plotter and computer-generated continuous-tone hologram. , 1971, Applied optics.