High-precision methanol spectroscopy with a widely tunable SI-traceable frequency-comb-based mid-infrared QCL

There is an increasing demand for precise molecular spectroscopy, in particular in the mid-infrared (MIR) fingerprint window that hosts a considerable number of vibrational signatures, whether it be for modeling our atmosphere, interpreting astrophysical spectra, or testing fundamental physics. We present a high-resolution MIR spectrometer traceable to primary frequency standards. It combines a widely tunable ultra-narrow quantum cascade laser (QCL), an optical frequency comb, and a compact multipass cell. The QCL frequency is stabilized onto a comb controlled with a remote near-infrared ultra-stable laser, transferred through a fiber link. The resulting QCL frequency stability is below 10−15 from 0.1 to 10 s, and its frequency uncertainty of 4×10−14 is given by the remote frequency standards. Continuous tuning over ∼400  MHz is reported. We use the apparatus to perform saturated absorption spectroscopy of methanol in the low-pressure multipass cell and demonstrate a statistical uncertainty at the kilohertz level on transition center frequencies, confirming its potential for driving the next generation technology required for precise spectroscopic measurements.

[1]  C. Camy‐Peyret,et al.  Laser spectroscopic study of ozone in the 100←000 band for the SWIFT instrument , 2010 .

[2]  M. Tarbutt,et al.  High-resolution mid-infrared spectroscopy of buffer-gas-cooled methyltrioxorhenium molecules , 2016, 1607.08741.

[3]  John L. Hall,et al.  Direct Optical Resolution of the Recoil Effect Using Saturated Absorption Spectroscopy , 1976 .

[4]  J. Guéna,et al.  Progress in atomic fountains at LNE-SYRTE , 2012, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[5]  M. Winnewisser,et al.  Microwave, Infrared, and Laser Transitions of Methanol Atlas of Assigned Lines from 0 to 1258 cm-1 , 1995 .

[6]  Wei Zhang,et al.  Mid-infrared laser phase-locking to a remote near-infrared frequency reference for high-precision molecular spectroscopy , 2013 .

[7]  Stephan Schiller,et al.  Quantum cascade laser-based mid-IR frequency metrology system with ultra-narrow linewidth and 1  ×  10⁻¹³-level frequency instability. , 2015, Optics letters.

[8]  Christian Chardonnet,et al.  Stability of the proton-to-electron mass ratio. , 2008 .

[9]  E. Herbst,et al.  Complex Organic Interstellar Molecules , 2009 .

[10]  A. Amy-Klein,et al.  Spectral purity and long-term stability of CO/sub 2/ lasers at the Hertz level , 1995 .

[11]  R. Lees,et al.  Unraveling torsional bath interactions with the CO stretching state in methanol , 2015 .

[12]  L. Mertz,et al.  Real-time fringe-pattern analysis: corrigendum. , 1983, Applied Optics.

[13]  I. Galli,et al.  Testing the validity of Bose-Einstein statistics in molecules , 2015 .

[14]  R. Butcher,et al.  Precise measurements of line broadening and line shifts in low-pressure gases using a heterodyne CO 2 laser spectrometer: applications to C 2 H 4 and CH 3 OH , 1998 .

[15]  Duluo Zuo,et al.  An Efficient High-energy Pulsed NH3 Terahertz Laser , 2010 .

[16]  Jun Ye,et al.  Cold molecule spectroscopy for constraining the evolution of the fine structure constant. , 2006, Physical review letters.

[17]  E. Oelker,et al.  Ultrastable Silicon Cavity in a Continuously Operating Closed-Cycle Cryostat at 4 K. , 2017, Physical review letters.

[18]  B. McCall,et al.  Extended sub-Doppler resolution spectroscopy of the ν3 band of methane , 2018, Journal of Quantitative Spectroscopy and Radiative Transfer.

[19]  K. Eikema,et al.  Sub-Doppler Frequency Metrology in HD for Tests of Fundamental Physics. , 2017, Physical review letters.

[20]  E. Hinds,et al.  Improved measurement of the shape of the electron , 2011, Nature.

[21]  A Amy-Klein,et al.  Stability of the proton-to-electron mass ratio. , 2008, Physical review letters.

[22]  M. Zahniser,et al.  Dual quantum cascade laser trace gas instrument with astigmatic Herriott cell at high pass number. , 2011, Applied optics.

[23]  Probing QED and fundamental constants through laser spectroscopy of vibrational transitions in HD+ , 2016, Nature communications.

[24]  S. Dawkins,et al.  Considerations on the Measurement of the Stability of Oscillators with Frequency Counters , 2007, 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum.

[25]  Lauri Halonen,et al.  Frequency comb assisted two-photon vibrational spectroscopy. , 2017, Optics express.

[26]  H. Williams,et al.  Molecules cooled below the Doppler limit , 2017, Nature Physics.

[27]  Christian Chardonnet,et al.  State-of-the-Art for High Accuracy Frequency Standards in the 28 THz Range Using Saturated Absorption Resonances of OsO4 and CO2 , 1989 .

[28]  N. Vanhaecke,et al.  Precision measurements with polar molecules: the role of the black body radiation , 2007, 0801.3158.

[29]  A. Wicht,et al.  Vibrational Spectroscopy of HDwith 2-ppb Accuracy , 2007 .

[30]  Wim Ubachs,et al.  Perspective: tipping the scales: search for drifting constants from molecular spectra. , 2013, The Journal of chemical physics.

[31]  Fabio Stefani,et al.  Hybrid fiber links for accurate optical frequency comparison , 2017 .

[32]  Simone Borri,et al.  Comb-assisted subkilohertz linewidth quantum cascade laser for high-precision mid-infrared spectroscopy , 2013 .

[33]  C. Chardonnet,et al.  Absorption-line-shape recovery beyond the detection-bandwidth limit: Application to the precision spectroscopic measurement of the Boltzmann constant , 2014, 1406.2975.

[34]  G Santarelli,et al.  Prototype of an ultra-stable optical cavity for space applications. , 2012, Optics express.

[35]  I-A Melzer-Pellmann,et al.  Suppression of Excited ϒ States Relative to the Ground State in Pb-Pb Collisions at sqrt[s]_{NN}=5.02  TeV. , 2017, Physical review letters.

[36]  M. Feld,et al.  Laser Stark saturation spectroscopy in methyl alcohol , 1980 .

[37]  Fabio Stefani,et al.  Two-way optical frequency comparisons at 5*10^-21 relative stability over 100-km telecommunication network fibers , 2014 .

[38]  S. Briaudeau,et al.  Measuring the Boltzmann constant by mid-infrared laser spectroscopy of ammonia , 2015, 1506.01828.

[39]  P. Rosenbusch,et al.  Experimental realization of an optical second with strontium lattice clocks , 2013, Nature Communications.

[40]  Liang Miao,et al.  Pulsed CH3OH Terahertz Laser Emission Pumped by a TEA CO2 Laser , 2010 .

[41]  C. Panda,et al.  Improved limit on the electric dipole moment of the electron , 2018, Nature.

[42]  Peng Wang,et al.  New assignments, line intensities, and HITRAN database for CH3OH at 10 μm , 2004 .

[43]  F. Matsushima,et al.  Sub-Doppler Spectroscopy by Use of Microwave Sidebands of CO2 Laser Lines Applied to the C-O Stretching Fundamental Band of Methanol , 2003, Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry.

[44]  W. Ubachs,et al.  Molecular Fountain. , 2016, Physical review letters.

[45]  Christophe Alexandre,et al.  Phase noise characterization of sub-hertz linewidth lasers via digital cross correlation. , 2017, Optics letters.

[46]  S. Borri,et al.  Subkilohertz linewidth room-temperature mid-infrared quantum cascade laser using a molecular sub-Doppler reference. , 2012, Optics letters.

[47]  Alexander P. Sedlack,et al.  Sisyphus Laser Cooling of a Polyatomic Molecule. , 2016, Physical review letters.

[48]  Peter F. Bernath,et al.  Infrared absorption cross sections for methanol , 2012 .

[49]  Ingmar Hartl,et al.  Coherent phase lock of a 9 μm quantum cascade laser to a 2 μm thulium optical frequency comb. , 2012, Optics letters.

[50]  Hall,et al.  Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis , 2000, Science.

[51]  L. Coudert,et al.  Spin-torsion effects in the hyperfine structure of methanol. , 2015, The Journal of chemical physics.

[52]  M. Daëron,et al.  Lamb dip CRDS of highly saturated transitions of water near 1.4 μm. , 2018, The Journal of chemical physics.

[53]  Fabio Stefani,et al.  Studying the fundamental limit of optical fiber links to the 10-21 level. , 2018, Optics express.

[54]  Pierre Cérez,et al.  Gas-lens effect and cavity design of some frequency-stabilized He-Ne lasers: author's reply to comments. , 1983, Applied optics.

[55]  L. Bougas,et al.  Measuring molecular parity nonconservation using nuclear-magnetic-resonance spectroscopy , 2017, 1707.01759.

[56]  P. Bernath,et al.  Spectroscopic requirements for ACCURATE, a microwave and infrared-laser occultation satellite mission , 2011 .

[57]  Fritz Riehle,et al.  Frequency Standards: Basics and Applications , 2003 .

[58]  Li-Hong Xu,et al.  Saturation-dip measurements for the ν 8 C-O stretching band of CH 3 OH with a CO 2 -laser-microwave-sideband spectrometer , 2006 .

[59]  Przemyslaw Krehlik,et al.  The H2020 European project CLONETS: Clock services over optical-fibre networks in Europe , 2018, 2018 European Frequency and Time Forum (EFTF).

[60]  D. Jacob,et al.  Evidence from the Pacific troposphere for large global sources of oxygenated organic compounds , 2001, Nature.

[61]  Fabio Stefani,et al.  Tackling the limits of optical fiber links , 2014, 1412.2496.

[62]  O Acef Metrological properties of optical frequency standard , 1997 .

[63]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[64]  G. Groenenboom,et al.  Hyperfine interactions and internal rotation in methanol. , 2016, The Journal of chemical physics.

[65]  J.J. McFerran,et al.  Considerations on the measurement of the stability of oscillators with frequency counters , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[66]  Anthony Bercy,et al.  Frequency and time transfer for metrology and beyond using telecommunication network fibres , 2015 .

[67]  P. Masłowski,et al.  Absolute frequency determination of molecular transition in the Doppler regime at kHz level of accuracy , 2017, 1705.06639.

[68]  K. Eikema,et al.  SUB-DOPPLER FREQUENCY METROLOGY IN HD FOR TEST OF FUNDAMENTAL PHYSICS , 2018, Proceedings of the 73rd International Symposium on Molecular Spectroscopy.

[69]  Y. Moriwaki,et al.  Sub-Doppler Measurements of vco=1←0, K=0, A/E Lines of Methanol with Microwave Sidebands of CO2 Laser Lines , 2002 .

[70]  K. Menten,et al.  Testing the variability of the proton-to-electron mass ratio from observations of methanol in the dark cloud core L1498 , 2017, 1709.03103.

[71]  F Guillou-Camargo,et al.  First industrial-grade coherent fiber link for optical frequency standard dissemination. , 2018, Applied optics.

[72]  Christian Chardonnet,et al.  Probing weak force-induced parity violation by high-resolution mid-infrared molecular spectroscopy , 2013, 1309.5630.

[73]  S. Borri,et al.  Measuring molecular frequencies in the 1–10 μm range at 11-digits accuracy , 2017, Scientific Reports.

[74]  D. Akamatsu,et al.  Absolute frequency measurements and hyperfine structures of the molecular iodine transitions at 578 nm , 2016, 1603.07416.

[75]  John L. Hall,et al.  Saturated absorption line shape: Calculation of the transit-time broadening by a perturbation approach , 1976 .

[76]  G. Rempe,et al.  Optoelectrical Cooling of Polar Molecules to Submillikelvin Temperatures. , 2015, Physical review letters.

[77]  Christian Chardonnet,et al.  Quantum cascade laser frequency stabilization at the sub-Hz level , 2015 .

[78]  Burghard Lipphardt,et al.  Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements , 2002 .

[79]  F. Matsushima,et al.  Sub-Doppler spectroscopy of the C—O stretching fundamental band of methanol by use of microwave sidebands of CO 2 laser lines , 2000 .

[80]  H. E. Matthews,et al.  Detection of strong methanol masers towards galactic H II regions , 1987, Nature.

[81]  Christian Chardonnet,et al.  A widely tunable 10-μm quantum cascade laser phase-locked to a state-of-the-art mid-infrared reference for precision molecular spectroscopy , 2014, 1404.1162.

[82]  W. Ubachs,et al.  Prospects for precision measurements on ammonia molecules in a fountain , 2008 .

[83]  Fritz Riehle,et al.  Frequency standards , 2004 .

[84]  Yuchen Wang,et al.  Rovibrational fine structure and transition dipole moment of CF3H by frequency-comb-assisted saturated spectroscopy at 8.6 µm , 2018, Journal of Quantitative Spectroscopy and Radiative Transfer.

[85]  E. Hinds,et al.  A search for varying fundamental constants using hertz-level frequency measurements of cold CH molecules , 2013, Nature Communications.

[86]  P. Laporta,et al.  Absolute spectroscopy near 7.8 μm with a comb-locked extended-cavity quantum-cascade-laser , 2017, Scientific Reports.